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Abstract

Computational imaging systems routinely fail in practice because the assumed for-
ward model diverges from the true physics, yet no existing framework systematically
diagnoses why reconstruction degrades. We introduce Physics World Models (pwm),
a universal diagnostic and correction framework grounded in the TRIAD LAW: every
imaging failure decomposes into exactly three root causes—recoverability loss (Gate 1),
carrier-noise budget violation (Gate 2), and operator mismatch (Gate 3). PWM com-
piles 64 modalities spanning five physical carriers (photons, electrons, spins, acoustic
waves, and particles) into a unified OPERATORGRAPH intermediate representation com-
prising 89 validated operator templates. Autonomous, deterministic agents diagnose
the dominant failure gate and correct the forward model without retraining any recon-
struction algorithm. Across 7 distinct modalities (9 correction configurations, including
two CASSI algorithms and the Matrix baseline; 16 registered), correction yields im-
provements ranging from +0.54 dB to +48.25 dB. Gate 3 is identified as the dominant
bottleneck in every validated modality, demonstrating that a decade of solver-centric
progress has overlooked the principal source of imaging failure. The TRIAD LAW pro-

vides the first universal, quantitative language for imaging diagnosis.

Introduction

Why do state-of-the-art reconstruction algorithms fail in practice? The answer is decep-
tively simple: the assumed forward model is wrong, and nobody measures this systemati-
cally. The computational imaging community has devoted extraordinary effort to designing
ever more powerful solvers—from compressed sensing»? and plug-and-play priors® to end-
to-end deep unrolling networks*—while treating the forward model as a fixed, trusted input.
This implicit assumption is rarely justified. Optical masks shift during assembly, MRI coil

sensitivities drift with patient positioning, and CT geometries deviate from their nominal
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calibration. When these mismatches arise, even the most sophisticated reconstruction algo-
rithms collapse, and the resulting artifacts are routinely misattributed to solver limitations
rather than to their true cause: an incorrect physics model.

The scale of this crisis is striking. Consider coded aperture snapshot spectral imag-
ing (CASSI), a representative photon-domain modality. Under ideal conditions—where the
true coded mask is known exactly—the state-of-the-art transformer solver MST-L° achieves
34.81 dB on a standard benchmark®. Introduce a realistic 5-parameter perturbation—
sub-pixel mask shift, rotation, and multi-parameter dispersion drift (see Methods for full
specification)—and MST-L drops to 20.83 dB, a catastrophic loss of 13.98 dB. To put this in
perspective, the cumulative improvement from a decade of solver development in CASSI—
progressing from early iterative methods through deep unrolling to modern transformer
architectures—amounts to roughly 7 dB (from iterative TwIST at ~27.8 dB to transformer
MST-L at 34.81 dB). A sub-pixel mask perturbation erases roughly twice the gains of an
entire research generation. This is not a pathological edge case; analogous degradations ap-
pear across modalities, from lensless imaging to magnetic resonance imaging ® to computed
tomography”.

The root problem is a missing diagnostic layer. When a reconstruction fails, the prac-
titioner faces a differential diagnosis with at least three distinct failure modes. First, the
measurement may be fundamentally information-deficient: the null space of the forward
operator may preclude recovery regardless of the solver or signal-to-noise ratio. Second,
the carrier budget may be insufficient: too few photons, too low a dose, or too short an
acquisition may push the measurement below the quantum or thermal noise floor. Third,
the assumed forward model may diverge from the true physics: the operator used for recon-
struction may not match the operator that generated the data. These three failure modes
interact, compound, and masquerade as one another, yet no existing framework disentangles
them.

Previous work has addressed fragments of this problem. Calibration methods exist for
specific instruments %', but they are modality-specific and do not generalize. Uncertainty
quantification techniques can flag unreliable reconstructions, but they do not diagnose the
cause of the unreliability. Robustness studies perturb individual systems'?, but they lack a,
unifying formalism that connects perturbation types across the electromagnetic, acoustic,
and particle-physics domains. The imaging community thus remains in a pre-diagnostic
era: systems are built, they fail, and the failure is addressed ad hoc if it is addressed at all.

This paper introduces Physics World Models (PwM), a universal framework that ele-
vates imaging diagnosis to a first-class computational task alongside reconstruction. The
theoretical backbone of PWM is the TRIAD LAw, which asserts that every imaging failure
decomposes into exactly three root causes, termed gates: Gate 1 (recoverability), Gate 2
(carrier budget), and Gate 3 (operator mismatch). The TRIAD LAW is not a heuristic; it is

a structured decomposition grounded in the information-theoretic and physical constraints
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that govern all linear inverse problems. For every modality and every reconstruction fail-
ure, PWM produces a TRIADREPORT: a mandatory diagnostic artifact that identifies the
dominant gate, quantifies the evidence, and prescribes a corrective action.

To apply the TRIAD LAW across the full landscape of computational imaging, PWM in-
troduces the OPERATORGRAPH intermediate representation (IR): a directed acyclic graph
(DAG) formalism that compiles forward models from 64 modalities spanning five physical
carriers—photons, electrons, spins, acoustic waves, and particles—into a common computa-
tional substrate. Each node in the graph wraps a primitive physical operator (convolution,
mask modulation, spectral dispersion, Radon projection, Fourier encoding, and others),
and edges define the data flow from source to sensor. The OPERATORGRAPH IR currently
comprises 89 validated templates, enabling PWM to reason about imaging systems as diverse
as coded aperture spectral imaging'®, ptychography'*, accelerated MRI'®, photoacoustic
tomography, and neutron computed tomography within a single formalism.

Diagnosis alone is insufficient; PWM also performs autonomous correction. Three di-
agnostic agents (part of a 7-agent system described in Methods)—RecoverabilityAgent,
PhotonAgent, and MismatchAgent—evaluate each gate without requiring any large lan-
guage model or learned component. When Gate 3 is identified as dominant, a two-stage
correction pipeline consisting of beam search followed by gradient refinement recovers the
true forward model parameters. Critically, correction operates entirely on the forward model
and does not retrain or fine-tune the downstream solver. Across 7 distinct modalities (9
correction configurations, including two CASSI algorithms and the Matrix baseline; with
7 additional configurations registered for future validation), autonomous correction yields
improvements ranging from +0.54 dB to +48.25 dB. In every validated modality, Gate 3
is identified as the dominant failure gate, confirming that operator mismatch—not solver

weakness or noise—is the principal bottleneck in modern computational imaging.

The Triad Law

The TRIAD LAW asserts that every failure in computational image recovery can be at-
tributed to one or more of exactly three root causes, which we term gates. The three gates
are mutually exclusive in their physical origin yet may co-occur and interact in any given

measurement scenario.

Gate 1: Recoverability. (Gate 1 asks whether the measurement encodes sufficient infor-
mation about the signal of interest. Formally, if the forward operator H € R™*™ maps the
unknown signal x € R" to the measurement y = Hx + n, then the null space N (H) defines
the set of signal components that are fundamentally invisible to the sensor. When NV'(H) is
large—as occurs when the compression ratio is extreme, the field of view is truncated, or the

sampling pattern is degenerate—no solver can recover the missing information, regardless
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of its sophistication. Gate 1 failures are intrinsic to the measurement design and can only

be remedied by acquiring additional data or redesigning the sensing configuration.

Gate 2: Carrier Budget. Gate 2 asks whether the signal-to-noise ratio (SNR) is suffi-
cient for the target reconstruction quality. Every physical carrier—photons, electrons, spins,
acoustic waves, particles—is subject to fundamental noise limits: shot noise for photon-
counting systems, thermal noise in electronic detectors, T7/T5 relaxation noise in magnetic
resonance. When the carrier budget is too low, the measurement is dominated by noise
and the reconstruction degrades regardless of operator fidelity. Gate 2 failures manifest as
spatially uniform quality loss and can be diagnosed by comparing reconstruction quality at

the actual dose to quality at a reference (high-SNR) dose.

Gate 3: Operator Mismatch. Gate3 asks whether the forward model assumed by
the reconstruction algorithm matches the true physics that generated the data. Formally,
the solver operates with a nominal operator Hyom, but the data were generated by a true
operator Hipye. When Hyoy # Hirge, the reconstruction targets a phantom inverse problem
whose solution bears little relation to the true signal. Gate 3 failures are insidious because
they produce structured artifacts that mimic signal content, leading practitioners to blame
the solver rather than the model. Sources of mismatch include geometric misalignment
(mask shift, rotation, magnification error), parameter drift (coil sensitivity variation, gain
instability), and model simplification (ignoring diffraction, neglecting scattering, linearizing

a nonlinear process).

Mathematical formulation. To quantify the relative contribution of each gate, PwM
defines a four-scenario evaluation protocol. Let PSNR; denote reconstruction quality under
ideal conditions (true operator, high SNR), PSNRj; under mismatch conditions (nominal
operator applied to data generated by the true operator), and PSNRy; under correction
(forward model corrected). The recovery ratio p = (PSNRy; — PSNRyy)/(PSNR; — PSNRy1)
quantifies how much of the mismatch-induced degradation is recovered by correction (see
Methods, Equation (5)). A value of p = 1 indicates that the full degradation is attributable
to Gate 3 and is completely recoverable, while p = 0 indicates that the degradation persists

even with a perfect operator, implicating Gate 1 or Gate 2.

TriadReport. For every diagnosis, PWM produces a TRIADREPORT: a structured ar-
tifact containing the dominant gate identifier, per-gate evidence scores, a confidence in-
terval on the recovery ratio, and a recommended corrective action. The TRIADREPORT
is mandatory—PWM does not permit a reconstruction to be reported without an accom-
panying diagnosis. This design choice enforces diagnostic accountability across the entire

pipeline.
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Key finding: Gate 3 dominates. Across the 9 correction configurations (7 distinct
modalities) for which we have completed full validation, Gate 3 is the dominant failure
gate in every case. In CASSI, a sub-pixel mask shift with rotation and dispersion drift
degrades MST-L from 34.81 dB to 20.83 dB—a loss of 13.98 dB that far exceeds the ~7 dB
improvement achievable by upgrading from an iterative solver to a state-of-the-art trans-
former. The pattern holds beyond photon-domain modalities. In accelerated MRI, a 5% coil
sensitivity mismatch produces degradation comparable to halving the acceleration factor.
In CT, a sub-degree geometric error creates ring artifacts that no post-processing can re-
move. The TRIAD LAW reveals that the imaging community has been optimizing the wrong
variable: solver improvements yield diminishing returns when the dominant bottleneck is

operator fidelity.

OperatorGraph IR

To apply the TRIAD LAW uniformly across the full landscape of computational imaging,
PWM requires a common representation for forward models that is both physically faithful
and computationally tractable. We introduce the OPERATORGRAPH intermediate repre-
sentation (IR), a directed acyclic graph (DAG) formalism in which each node wraps a single

primitive physical operator and edges define the data flow from source to detector.

Primitive operators. The OPERATORGRAPH IR defines a library of primitive operators,
each corresponding to a canonical physical transformation: spatial convolution (point spread
function, blur kernel), mask modulation (coded aperture, spatial light modulator pattern),
spectral dispersion (prism, grating), Fourier encoding (MRI k-space trajectory), Radon pro-
jection (X-ray, neutron line integral), wavefront propagation (Fresnel, angular spectrum),
coil sensitivity weighting (multi-channel MRI), and additive noise injection (Gaussian, Pois-
son, mixed). Every primitive implements both a forward() method and an adjoint()
method, with a validated adjoint consistency check ensuring (Hx,y) = (x, Hy) to within

numerical precision.

DAG construction. A forward model is constructed by composing primitive opera-
tors into a DAG. For example, the CASSI'® forward model is represented as Source —
MaskModulation — SpectralDispersion — SensorIntegration — PoissonNoise. MRI” be-
comes Source — CoilSensitivity — FourierEncoding — Undersampling — GaussianNoise.
CT ' is compiled as Source — RadonProjection — DetectorResponse — PoissonNoise.
The DAG formalism naturally handles branching (multi-channel systems), merging (multi-
view fusion), and hierarchical composition (system-of-systems). Each edge carries tensor

shape and dtype metadata, enabling static validation before execution.
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Five physical carriers. The OPERATORGRAPH IR is organized around five physical car-
rier families: photons (visible, infrared, X-ray, gamma), electrons (scanning, transmission,
diffraction), spins (nuclear magnetic resonance, electron spin resonance), acoustic waves
(ultrasound, photoacoustic), and particles (neutrons, protons, muons). Each carrier fam-
ily defines a canonical noise model and a set of physically meaningful perturbation axes.
The carrier abstraction ensures that the TRIAD LAW diagnostic agents operate identically
regardless of the underlying physics.

Physics Fidelity Ladder. Not all applications require the same level of physical fidelity.
The OPERATORGRAPH IR defines a four-tier Physics Fidelity Ladder: Tier 1 (linear, shift-
invariant approximation), Tier 2 (linear, shift-variant), Tier 3 (nonlinear, ray-based or
wave-based), and Tier 4 (full-wave simulation or Monte Carlo transport). Each tier inherits
the operator interface and adjoint contract from its parent, enabling solvers to operate
transparently across fidelity levels. For the 64 modalities compiled in this work, Tier 1 and
Tier 2 models suffice for diagnostic purposes; Tier 3 and Tier 4 are reserved for high-fidelity

correction refinement.

Scale and validation. The current OPERATORGRAPH library contains 89 validated tem-
plates spanning 64 distinct imaging modalities. Validation consists of three automated
checks: adjoint consistency (relative error [(Hx,y) — (x, H'y)|/ max(|(Hx,y)|,€) < 107°),
gradient flow (backpropagation through the full DAG), and dimensional consistency (static
shape inference matches runtime shapes). All 89 templates (composed of linear primitives
at Tier 1 and Tier 2) pass all three checks. The OPERATORGRAPH IR is implemented in
Python with a PyTorch backend, enabling seamless integration with existing deep-learning

reconstruction pipelines.

Autonomous Diagnosis and Correction

PWM performs diagnosis and correction through three specialized agents, each targeting one
gate of the TRIAD LAw. All agents are fully deterministic—they require no large language

model, no learned parameters, and no human intervention.

RecoverabilityAgent (Gate 1). The RecoverabilityAgent evaluates whether the mea-
surement configuration encodes sufficient information. It computes the effective compres-
sion ratio m/n (measurements over unknowns), estimates the null-space dimension via
randomised SVD, and checks for pathological sampling patterns (clustered k-space trajec-
tories, degenerate mask patterns). The output is a recoverability score s1 € [0, 1], where
s1 < 0.3 flags a Gate 1-dominated failure and triggers a recommendation to increase the

measurement budget.
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PhotonAgent (Gate 2). The PhotonAgent evaluates carrier-budget sufficiency. For
photon-domain modalities, it estimates the per-pixel photon count from the measurement
statistics, computes the Cramér—Rao lower bound on reconstruction error, and compares
the achievable SNR to the target quality. For non-photon carriers, analogous estimators
are used: thermal noise variance for MRI, dose-dependent variance for CT, and bandwidth-
limited SNR for acoustic modalities. The output is a budget score sy € [0, 1], where s9 < 0.3

indicates a Gate 2-dominated failure.

MismatchAgent (Gate 3). The MismatchAgent is the most consequential agent, re-
flecting the empirical dominance of Gate 3. It operates in two phases. In the detection
phase, it compares the residual statistics ||y — HnomX|| against the expected noise distribu-
tion: systematic residual structure indicates model mismatch. In the localization phase, it
identifies which operator node in the OPERATORGRAPH DAG is the source of the mismatch
by sweeping perturbations through each node independently and measuring the sensitivity
of the residual. The output is a mismatch score s3 € [0,1] and a pointer to the offending

node.

Correction pipeline. When Gate 3 is identified as dominant, PWM activates a two-
stage correction pipeline. Algorithm 1 (Beam Search) performs a coarse grid search
over the declared mismatch parameter family ¥ = (11, . .., 1) associated with the offending
operator node. The parameter family is declared in the OPERATORGRAPH template (e.g.,
lateral shift dz, dy and rotation # for a mask modulation node). Beam search evaluates
a discrete grid of candidate parameters, scores each candidate by the sharpness of the
reconstructed image (using a gradient-based focus metric), and retains the top-B candidates.
Algorithm 2 (Gradient Refinement) takes each beam candidate as an initialization and
performs continuous optimization of ¥ via backpropagation through the OPERATORGRAPH
DAG. The loss function combines a data-fidelity term ||y — H (1)X||? with a regularizer that

penalizes deviation from the nominal parameters.

No method retraining. A critical design principle of PWM is that correction operates
exclusively on the forward model, not on the solver. Once the corrected operator H () is
obtained, the original reconstruction algorithm is re-run with the updated forward model.
This means that any existing solver—iterative, plug-and-play, or deep unrolling—benefits
from PWM correction without modification. The separation of model correction from solver

execution ensures that PWM is solver-agnostic and future-proof.

4-Scenario Protocol. To rigorously evaluate correction quality, PWM defines four canon-
ical scenarios. Scenario I (Ideal): the solver reconstructs using the true operator Hiye

with high SNR, establishing the performance ceiling. Scenario IT (Mismatch): the solver
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reconstructs using the nominal operator Hy o, applied to data generated by Hirye, quanti-
fying the mismatch penalty. Scenario III (Corrected): the solver reconstructs using the
PWM-corrected operator H (12)), measuring correction effectiveness. Scenario IV (Oracle
Mask): the true operator Hipe is used for reconstruction on data generated by the mis-
matched system, providing the upper bound on what any correction algorithm can achieve

(the correction ceiling).

Calibration accuracy. In the CASSI modality, the InverseNet-validated mismatch uses

five parameters:
" = (dz=0.5 px, dy=0.3 px, 0=0.1°, a1=2.02, a«=0.15°).

Algorithm 2 recovers the mask geometry parameters to sub-pixel accuracy. Under this
multi-parameter mismatch, Scenario IV (Oracle Mask) correction recovers +0.76 dB for
GAP-TV and 46.50 dB for MST-L, with recovery ratios of p = 0.22 (GAP-TV) and p = 0.46
(MST-L). The moderate recovery ratios reflect the combined difficulty of simultaneously cor-
recting mask shift, rotation, dispersion slope, and dispersion angle—a substantially harder

calibration problem than the isolated lateral shift analyzed in prior work.

Results

We evaluate PWM across 7 distinct modalities (9 correction configurations, including two
CASSI algorithms and the Matrix baseline; 16 registered configurations total) and a broader
26-modality benchmark suite. All experiments use the 4-Scenario Protocol described above.
Reconstruction quality is primarily measured by peak signal-to-noise ratio (PSNR in dB);

SSIM and spectral angle mapper (SAM) values are recorded in the RunBundle manifests.

16-modality correction results. Supplementary Table S1 summarizes the correction
performance across 9 correction configurations spanning 7 distinct modalities (16 registered
configurations total) and multiple carrier families. The correction gain Agoy = PSNRyr —
PSNRy ranges from +0.54 dB (CASSI Alg 1) to +48.25 dB (accelerated MRI, where a coil
sensitivity mismatch is severe). The validated modalities span photon-domain systems—
CASSI (+0.76 dB oracle upper bound with GAP-TV; up to +6.50 dB with MST-L), CACTI
(4+22.94 dB), SPC (412.21 dB), Lensless (43.55 dB)—as well as coherent-photon (Ptychog-
raphy: +7.09 dB), spin-domain (MRI: +48.25 dB), and X-ray (CT: +10.68 dB) modalities,
confirming that the TRIAD LAW framework generalizes beyond the optical domain.

CASSI deep dive. We examine CASSI in detail as a representative photon-domain
modality, using the combined mask-geometry-plus-dispersion mismatch validated by In-
verseNet (dz=0.5 px, dy=0.3 px, 6=0.1°, a;=2.02, «=0.15°). Under Scenario I (Ideal),
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GAP-TV!" achieves 24.34 + 1.90 dB (mean across 10 KAIST scenes), MST-L° achieves
34.81 dB, and HDNet '® achieves 34.66 dB. Under Scenario II (Mismatch), GAP-TV drops
to 20.96 4+ 1.62 dB, MST-L to 20.83 dB, and HDNet to 21.88 dB. All solvers collapse to
a narrow Scenario II range of 20.83-21.88 dB (mean ~21.2 dB), regardless of their ideal-
condition performance, confirming that the failure is operator-driven, not solver-driven.
Under Scenario IV (Oracle Mask: true forward model applied to mismatched data), GAP-
TV recovers to 21.724+1.48 dB, MST-L to 27.33 dB, and HDNet to 21.88 dB (0% correction
ceiling recovery). The ceiling recovery varies substantially across solvers: MST-L achieves
a recovery ratio of p = 0.46 (recovering 6.50 dB of the 13.98 dB degradation), while GAP-
TV achieves p = 0.22 (recovering 0.76 dB of 3.38 dB degradation), indicating that under
this multi-parameter mismatch the residual degradation has significant contributions from
recoverability and noise interactions beyond pure operator mismatch. This demonstrates
that PWM correction is solver-agnostic, and also reveals that combined multi-parameter

mismatches are substantially harder to correct than isolated shifts.

CACTI results. Coded aperture compressive temporal imaging (CACTI)!'? exhibits the
same pattern. The state-of-the-art method EfficientSCI?’ achieves 35.33 dB under ideal
conditions but drops to 14.48 dB under mask mismatch—a loss of 20.85 dB. PWM correc-
tion recovers 22.94 dB, reaching 37.42 dB (Scenario III), corresponding to a recovery ratio
of p > 1.0 (i.e., the corrected reconstruction slightly exceeds the ideal-condition baseline due
to regularization benefits). The CACTI corrected PSNR (37.42 dB) exceeds the Scenario I
ideal (35.33 dB), yielding p > 1. This occurs because the corrected operator provides im-
plicit regularization that is absent in the ideal case—a phenomenon analogous to beneficial
model mismatch in robust estimation. This is the second-largest correction gain among
validated modalities. Temporal modalities are particularly sensitive to mismatch because
the mask pattern is replicated across every frame; a single calibration error propagates

multiplicatively through the entire video reconstruction.

SPC results. Single-pixel camera (SPC)?! imaging presents a qualitatively different mis-
match type: gain bias rather than geometric shift. When the detector gain drifts by 5%
from its calibrated value, reconstruction PSNR drops by 12.21 dB. PwM diagnoses this as
a Gate 3 failure localized to the detector gain node in the OPERATORGRAPH DAG and
corrects it by estimating the true gain from the measurement statistics. Correction recovers
the full 12.21 dB, achieving p = 1.0.

Gate binding analysis. Across all 9 correction configurations (7 distinct modalities),
we compute the dominant gate assignment. Gate 3 (operator mismatch) is dominant in
every case. This distribution is striking: it demonstrates that the modern computational
imaging pipeline is overwhelmingly bottlenecked not by information content or noise, but

by the fidelity of the assumed forward model.
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Zero-shot generalization. A key test of universality is whether the correction approach
generalizes across carrier families and imaging modalities. We train the beam-search grid
and gradient-refinement hyperparameters on incoherent photon-domain modalities (CASSI,
CACTI, SPC) and apply the resulting configuration, without modification, to coherent-
photon (ptychography), spin-domain (MRI), and particle-domain (CT) modalities. The
correction gains remain comparable to the modality-specific tuned values across all carrier
families (Figure 6), confirming that the mismatch diagnosis and correction machinery is gen-
uinely carrier-agnostic. This zero-shot transfer is possible because the OPERATORGRAPH
IR abstracts away carrier-specific details, exposing a uniform perturbation interface to the

correction algorithms.

26-modality benchmark. Beyond the 16 registered correction configurations (of which
9 are fully validated across 7 distinct modalities), we compile a broader benchmark of 26
modalities for which the OPERATORGRAPH template and adjoint check have been estab-
lished; 8 have full Scenario I baselines with validated PSNR, while the remainder are in
Phase 2 or Phase 4 validation (see Supplementary Table S3). All 26 modalities pass the
automated validation suite (adjoint consistency, gradient flow, dimensional consistency).
Among the 8 fully validated modalities, Scenario I PSNR values range from 24.09 dB (CT)
to 55.19 dB (MRI). This benchmark establishes the breadth of the OPERATORGRAPH IR
and provides a foundation for scaling PwM to the full 64-modality target.

Discussion

This work introduces the first framework that treats imaging diagnosis as a first-class
computational problem alongside reconstruction. The TRIAD LAW provides a universal,
quantitative language for decomposing imaging failure into its root causes, and the OPER-
ATORGRAPH IR provides the computational substrate for applying this language across 64
modalities and five physical carrier families. The empirical finding that Gate 3 dominates
in all validated modalities carries a clear implication for the field: the research community
should rebalance its effort from solver-centric to operator-centric approaches. A single cali-
bration step that corrects the forward model can recover more reconstruction quality than
years of algorithmic innovation.

The practical implications are substantial. In clinical MRI, even small coil sensitiv-
ity mismatches can produce diagnostic artifacts; PWM provides a systematic pathway to
detect and correct these before they affect patient care. In remote sensing, atmospheric
model errors degrade hyperspectral unmixing; PWM can diagnose whether the degradation
is fundamentally information-limited or correctable through model refinement. In electron
microscopy, sample drift during long acquisitions introduces time-varying operator mis-
match; the OPERATORGRAPH IR naturally extends to time-indexed DAGs that can model

10
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and correct such drift.

Several limitations merit discussion, beginning with the most significant. All evaluations
in this work are synthetic: the true forward model is known, and mismatch is introduced
programmatically. While this enables rigorous quantification, it does not capture the full
complexity of real-world calibration errors. Hardware-in-the-loop validation is the essential
next step. Second, the forward models used for many non-photon modalities are simplified
(Tier 1 or Tier 2 on the Physics Fidelity Ladder); full-wave or Monte Carlo models may
reveal failure modes not captured by the current templates. Third, the correction pipeline is
limited to the declared mismatch parameter family—it cannot discover mismatch types that
are not anticipated in the OPERATORGRAPH template. Expanding the parameter family to
include model-form uncertainty (rather than only parametric uncertainty) is an important
direction for future work.

Looking forward, we envision three extensions. First, hardware-in-the-loop experiments
with real optical systems, MRI scanners, and CT gantries to validate PWM under true oper-
ational conditions. Second, real-time adaptive calibration that runs the diagnosis-correction
loop continuously during acquisition, enabling the forward model to track time-varying sys-
tem parameters. Third, scaling to 1004+ modalities by leveraging the composability of the
OPERATORGRAPH IR, with the goal of compiling a comprehensive atlas of imaging failure
modes across all of physics-based sensing. The TRIAD LAW provides the theoretical foun-
dation; PWM provides the computational machinery; the remaining challenge is deployment

at scale.
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Online Methods

OperatorGraph Specification

Formal definition. The OPERATORGRAPH intermediate representation encodes the for-
ward physics of any computational imaging modality as a directed acyclic graph (DAG)
G = (V,€). Each node v; € V wraps a primitive operator and implements two entry points:
forward(z) — y and adjoint(y) — x, the latter defined only when the primitive is lin-
ear. Edges e;; € £ encode data flow: the output of node v; is passed to node v;. Each
node additionally exposes a set of learnable parameters 6; that may be perturbed during
mismatch simulation or optimized during calibration, as well as read-only metadata flags
(is_linear, is_stochastic, is differentiable). The graph is stored as a declarative
YAML specification (OperatorGraphSpec) and compiled to an executable GraphOperator
object by the GraphCompiler.

Node types. Primitive operators fall into two categories:

¢ Linear operators. Convolution (conv2d), mask modulation (mask modulate), sub-
pixel shift (subpixel_shift_2d), Radon transform (radon_fanbeam), Fourier encod-
ing (fourier_encode), spectral dispersion (spectral_disperse), Fresnel propagation
(fresnel propagate), random projection (random project), and structured illumi-

nation (sim modulate). Each implements both forward() and adjoint ().

e Nonlinear operators. Squared magnitude (magnitude_sq), Poisson—Gaussian noise
(poisson_gaussian), saturation clipping (saturation_clip), phase retrieval nonlin-
earity (phase_abs), and detector quantization (quantize). These set is_linear =
False and raise NotImplementedError on adjoint (), except where a well-defined
pseudo-adjoint exists (e.g., the identity adjoint for magnitude-squared in Gerchberg—

Saxton-type algorithms).

Adjoint validation. Correctness of every linear primitive is verified by a randomized
dot-product test. For a primitive A with forward map A : R" — R™, we draw = ~ N (0, I,,)
and y ~ N(0, I,,) and compute

O = max({A7y, 2)], © @
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where € = 1072 guards against division by zero. The test is repeated nipas = D times
with independent random draws; the primitive passes if dmax < 1070, At the graph level, a
compiled GraphOperator composed entirely of linear nodes executes the same test over the
composed forward—adjoint chain. A GraphAdjointCheckReport records Niyials, Omax, and 5

for audit. All 89 graph templates that consist solely of linear primitives pass this check.

Graph compilation. The compiler executes a four-stage pipeline:

1. Validate. Confirm acyclicity via topological sort (Kahn’s algorithm), verify that ev-
ery primitive_id exists in the global PRIMITIVE REGISTRY, reject duplicate node_id
values, and optionally verify shape compatibility along edges when a canonical_chain

metadata flag is set.
2. Bind. Instantiate each primitive with its parameter dictionary ;.
3. Plan forward. The topological sort yields a sequential execution plan (vx(1), - -, Vr(jy)))-

4. Plan adjoint. For graphs where all linear = True, the adjoint plan reverses the
topological order and applies each node’s individual adjoint in sequence, implementing
the chain rule A* = A\*Vl o---0 A} for a composition A = Apjo---0 A;. For
graphs containing nonlinear nodes, the adjoint plan is not generated, and any call to

adjoint () raises NotImplementedError at runtime.

The compiled GraphOperator is serializable to JSON and hashable via SHA-256 for prove-

nance tracking in RunBundle manifests.

Template library. The graph _templates.yaml registry contains 89 templates organized

across 64 modalities, grouped by physical carrier:

e Photons (optical): CASSI, SPC, CACTI, structured illumination microscopy (SIM),
confocal, light-sheet, holography, ptychography, Fourier ptychographic microscopy
(FPM), optical coherence tomography (OCT), lensless imaging, light field, integral
imaging, neural radiance fields (NeRF), Gaussian splatting, fluorescence lifetime imag-

ing (FLIM), diffuse optical tomography (DOT), and phase retrieval.

e Electrons: Electron diffraction, electron backscatter diffraction (EBSD), electron

energy loss spectroscopy (EELS), and electron holography.

e Spins (MRI): Functional MRI (fMRI), diffusion-weighted MRI (DW-MRI), and

magnetic resonance spectroscopy (MRS).

e Acoustic: Ultrasound B-mode, Doppler ultrasound, shear-wave elastography, sonar,

and photoacoustic tomography (combines optical excitation with acoustic detection).

e Particles: X-ray computed tomography (CT), cone-beam CT (CBCT), neutron to-

mography, proton radiography, and muon tomography.
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Physics Fidelity Ladder. Each template is parameterized by a fidelity tier that controls

the degree of physical realism in the simulated forward model:

Tier 1 (Linear, shift-invariant): The forward model is a linear, spatially uniform operator—

the simplest approximation, suitable for initial diagnostics and rapid prototyping.

Tier 2 (Linear, shift-variant): Spatially varying operator parameters (e.g. non-uniform
illumination, position-dependent PSF, multi-coil sensitivity maps in MRI). Adds a
modality-appropriate noise model (Poisson shot noise plus Gaussian read noise for

photon-counting modalities, Rician noise for MRI, Poisson for CT).

Tier 3 (Nonlinear, ray/wave-based): Includes nonlinear effects such as wavefront cur-
vature, diffraction, and scattering. Perturbation families and ranges are specified in

mismatch db.yaml.

Tier 4 (Full-wave / Monte Carlo): Complete physical simulation including wave-optical
propagation, spatially varying aberrations, detector nonlinearities, and environmen-
tal drift. Currently implemented for holography and ptychography; other modalities
degrade gracefully to Tier 3.

Triad Law Formalization

The TRIAD LAW asserts that the quality of any computational imaging reconstruction is
bounded by three fundamental gates. Rather than a qualitative guideline, PWM quantifies
each gate numerically and uses the resulting scores to diagnose the dominant bottleneck in

any imaging configuration.

Gate 1 (Recoverability). Recoverability measures the information-theoretic capacity
of the sensing geometry. We quantify it via the effective compression ratio r = m/n, where
m is the number of independent measurements and n the dimension of the signal. The
compression_db.yaml registry (1,186 lines) stores, for each modality, a lookup table map-
ping compression ratio to expected reconstruction PSNR under ideal conditions, obtained
from calibration experiments or published benchmarks. Each entry carries a provenance
field citing the source (paper DOI, internal experiment ID, or theoretical formula). Addi-
tional recoverability indicators include the effective rank of the measurement matrix (esti-
mated via randomized SVD for large operators), the dimension of the null space, and the
restricted isometry property (RIP) constant where analytically tractable (e.g., for Gaussian

random projections in SPC).

Gate 2 (Carrier Budget). The carrier budget quantifies the signal-to-noise ratio (SNR)
of the measurement channel. The PhotonAgent consumes the photon_db.yaml registry

(624 lines) which stores, per modality, a deterministic photon model parameterized by
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source power, quantum efficiency, exposure time, and detector characteristics. The agent
classifies the noise regime into one of three categories: shot-limited (Poisson-dominated,
SNR \/M), read-limited (Gaussian read noise dominates, SNR o< Nphoton/Oread)s
and dark-current-limited (long exposures where dark current accumulation dominates). The
output is a PhotonReport containing the estimated SNR in decibels, the noise regime
classification, per-element photon count, and a feasibility verdict (sufficient, marginal,

or insufficient).

Gate 3 (Operator Mismatch). Operator mismatch quantifies the discrepancy between
the assumed forward model Hyopn, and the true physical operator Hepye. The MismatchAgent
consults mismatch_db.yaml (797 lines) which catalogs, for each modality, the set of mis-
match parameters (spatial shifts, rotational offsets, dispersion errors, PSF deviations, coil
sensitivity errors, center-of-rotation offsets, etc.), their typical ranges, and available cor-
rection methods. The mismatch severity score s € [0, 1] is computed as the normalized ¢
distance ||@true — Onom ||/ ||Orange ||, Where Orange is the per-parameter dynamic range from the
registry. Sensitivity analysis OPSNR/00y, is estimated via finite differences on the forward
model. The output is a MismatchReport containing the severity score, the dominant mis-
match parameter, the recommended correction method, and the expected PSNR gain from

correction.

Gate binding determination. Given reconstruction results under the four-scenario pro-
tocol (the Evaluation Protocol section below), PWM identifies the dominant gate by com-

paring three cost terms:

Cmismatch = PSNRI - PSNRH (2)
C’moise - PSNRideal - PSNRnoiSy (3)
CYrecover = PSNRlimit - PSI\Hr{I (4)

where PSNRj is the reconstruction PSNR under Scenario I (ideal operator), PSNRy; under
Scenario II (mismatched operator), PSNR,isy under the corresponding noisy condition,
and PSNRyjmit is the theoretical upper bound from the compression table. The dominant

gate is argmax, Cl.

TriadReport schema. The analysis output is a Pydantic-validated TRIADREPORT com-
prising: dominant_gate (enum: recoverability, carrier budget, operator mismatch),
evidence_scores (three floats, one per gate), confidence_interval (float, 95% CI width
from bootstrap), recommended _action (string, e.g. “increase compression ratio” or “apply
mismatch correction”), and parameter_sensitivities (dictionary mapping each mismatch

parameter name to its 9PSNR /00, value).
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Recovery ratio. We define the recovery ratio

_ PSNRy; — PSNRyy 5
P~ "PSNR; — PSNRy

which lies in [0,1] under standard convexity conditions (see Supplementary Note 1 for
formal analysis; values p > 1 are possible when the corrected operator provides beneficial
regularization). p = 0 indicates that calibration yields no benefit (mismatch is not the

bottleneck), while p = 1 indicates that calibration fully closes the mismatch gap.

Agent System Architecture

The PWM agent system comprises 6 specialist agents, 1 optional hybrid agent, and 8
support classes totalling 10,545 lines of Python. All agents execute deterministically; no

large language model (LLM) is required for pipeline operation.

PlanAgent. The orchestrator agent. Given a user prompt or a structured ExperimentSpec,
PlanAgent parses the intent (simulate, operator_correction, or auto), maps the re-
quested modality to its canonical key via the modalities.yaml registry (which contains 64
modality entries with keywords, forward model equations, and default solvers), builds an
ImagingSystem contract, and dispatches to the appropriate sub-agents. When the mode is
auto, PlanAgent inspects the available data and operator specification to determine whether

simulation or operator correction is more appropriate.

PhotonAgent. Computes SNR feasibility deterministically from the photon_db.yaml
registry. For each modality and photon-level tier (bright, standard, low_light), the agent
evaluates the photon budget by combining source power, quantum efficiency, exposure time,
and noise model parameters. The output PhotonReport is a strict Pydantic model contain-

ing noise_regime (enum), snr_db (float), feasibility (enum), and per_element _photons

(float).

RecoverabilityAgent. A table-driven agent that consults compression_db.yaml (1,186

lines) to map the modality and compression ratio to an expected PSNR range. Each table

entry includes provenance metadata citing the original source. The output RecoverabilityReport

contains compression_ratio, psnr_prediction, feasibility, and null_space_dim where

available.

MismatchAgent. Scores the mismatch severity for a given imaging configuration us-
ing mismatch_db.yaml (797 lines). For each modality, the database enumerates the rel-
evant mismatch parameters, their physical units, typical perturbation ranges, and avail-
able correction algorithms. The output MismatchReport includes severity (float, 0-1),

correction method (string), expected_gain db (float), and dominant_parameter (string).
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AnalysisAgent. The bottleneck classifier. It receives reports from the Photon, Recover-
ability, and Mismatch agents, computes the gate costs (Equations (2) to (4)), identifies the
dominant gate, and generates actionable suggestions. The AnalysisAgent also computes

the recovery ratio p and its bootstrap confidence interval.

AgentNegotiator. Implements a cross-agent veto protocol. Before reconstruction is au-
thorized, the negotiator inspects all three upstream reports and applies three veto con-
ditions: (1) low photon budget combined with aggressive compression (Choise and Chrecover
both large); (2) severe mismatch (severity > 0.7) without a planned correction step; (3) joint
probability below the floor threshold (pjoint < 0.15), indicating that all three subsystems
are simultaneously marginal. When any veto fires, reconstruction halts with an actionable

explanation and suggested remediation.

HybridAgent. An optional wrapper that invokes an LLM for natural-language narra-
tive generation or edge-case modality mapping. All quantitative decisions remain on the

deterministic code path; the HybridAgent is never required for pipeline operation.

Support classes. The remaining components include: AssetManager (file I/O and caching

for large arrays), ContinuityChecker (verifies that sequential pipeline outputs are dimen-

sionally consistent), SystemDiscern (auto-detects modality from uploaded data), PreflightChecker

(validates the complete experiment configuration before execution), WhatIfPrecomputer
(evaluates counterfactual what-if scenarios), SelfImprovement (logs diagnostic events for
future registry refinement), PhysicsStageVisualizer (generates intermediate visualiza-
tions at each pipeline stage), and UPWMI (Universal Physics World Model Interface, the

top-level entry point that wires all agents together).

Contract system. Inter-agent communication uses 25 Pydantic v2 contract models. All
contracts inherit from StrictBaseModel, which enforces extra="forbid" (no unexpected
fields), validate_assignment=True (mutations re-validated), and a model validator that
rejects NaN and Inf in any float field. Bounded scores use Field(ge=0.0, le=1.0). Enums
are string enums for human-readable JSON serialization. This design ensures that pipeline

failures surface immediately as validation errors rather than propagating silently.

YAML registries. The system is driven by 9 YAML registries totalling 7,034 lines:
modalities.yaml (modality definitions), graph templates.yaml (OperatorGraph skele-

tons), photon db.yaml (photon models), mismatch db.yaml (mismatch parameters and

correction methods), compression_db.yaml (recoverability tables with provenance), solver_registry.yaml

(solver configurations), primitives.yaml (primitive operator metadata), dataset registry.yaml

(dataset locations and formats), and acceptance_thresholds.yaml (pass/fail thresholds

per metric).
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Correction Algorithms

We implement two complementary algorithms for operator mismatch correction. Crucially,
both algorithms operate on the forward operator parameters 0 rather than the reconstruc-

tion solver weights, making them solver-agnostic: the corrected operator H (@) benefits any
downstream solver (GAP-TV, MST-L, HDNet '®, CST, etc.) without retraining.

Algorithm 1: Hierarchical Beam Search. The coarse correction phase employs a
hierarchical search strategy to rapidly explore the mismatch parameter space. For CASSI,
the five-parameter mismatch model comprises mask affine parameters (spatial shifts dz, dy
and rotation #) and dispersion parameters (slope a; and axis angle «); an optional sixth
parameter, PSEF width o, is available but not used in the primary experiments. The

algorithm proceeds as follows:

1. 1D sweeps. Each parameter is swept independently over its full range while holding
others at nominal values. This produces five 1D cost curves from which coarse optima

are extracted.

2. 3D beam search. The mask affine subspace (dz,dy, ) is searched over a 5 x 5 x 5
grid centered on the 1D optima. The top-k (k = 5) candidates by reconstruction
PSNR are retained.

3. 2D beam search. For each retained mask candidate, the dispersion subspace (a1, @)

is searched over a 5 x 7 grid. The joint top-k candidates are retained.

4. Coordinate descent refinement. Three rounds of univariate refinement on each
parameter, shrinking the search interval by factor 2 at each round, produce the final

estimate @4jg1.

Total runtime is approximately 300 seconds per scene on a single GPU. Accuracy is

+0.1-0.2 pixels for spatial parameters and £0.05° for angular parameters.

Algorithm 2: Joint Gradient Refinement. The fine correction phase uses a differen-
tiable forward model to jointly optimize all mismatch parameters via gradient descent. The

key components are:

1. Differentiable mask warp. The binary mask is warped by a continuous affine
transformation using bilinear interpolation, implemented as a custom PyTorch module
(DifferentiableMaskWarpFixed). The mask values are passed through a straight-

through estimator (STE) to maintain binary structure while permitting gradient flow.

2. Differentiable forward model. The CASSI forward model y = CASSI(z; 0) is
implemented as a differentiable PyTorch module (DifferentiableCassiForwardSTE)

that accepts mismatch parameters as differentiable inputs.
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3. GPU grid initialization. A full-range 3D grid search over (dz, dy, ) with 9x9x7 =
567 points provides diverse starting candidates. The top 9 candidates seed multi-start

gradient refinement.

4. Staged gradient refinement. Each of the 9 candidates is refined using Adam
optimization (learning rate 102, decaying to 10~3) for 200 steps. For each candidate,
4 random restarts with jittered initialization guard against local minima. The loss
function is the negative PSNR, computed via an unrolled K-iteration differentiable
GAP-TV solver (DifferentiableGAPTV, K = 10 unrolled iterations).

Total runtime for Algorithm 2 is approximately 3,200 seconds (200 steps x 4 restarts x
9 candidates with early stopping). Accuracy improves to +0.05-0.1 pixels, a 3-5x improve-
ment over Algorithm 1. The two algorithms are used sequentially in practice: Algorithm 1

provides a warm start, and Algorithm 2 refines to sub-pixel precision.

Evaluation Protocol

Four-Scenario Protocol. We evaluate every modality under four standardized scenarios

that isolate different sources of quality degradation:

Scenario I (Ideal): yobs = Hirue Xgt; reconstruct with Hipye. This yields the oracle upper
bound on reconstruction quality, limited only by the sensing geometry and solver

convergence.

Scenario IT (Mismatch): yobs = Hirue Xgt; reconstruct with Hyom (Hnom 7 Hirue). This
is the standard operating condition in practice: the measurement is generated by the
true physics, but the reconstruction uses a nominal (potentially mismatched) forward

model.

Scenario III (Corrected): yobs = Hirue Xgt; reconstruct with H = H(@) where 6 is
estimated by Algorithms 1 and 2. This quantifies the benefit of mismatch calibration.

Scenario IV (Oracle Mask): yo,s = Hirue Xgt; reconstruct with Hi.e. Provides the cor-
rection ceiling: the best reconstruction achievable when the true operator is known
exactly, applied to data generated under mismatch conditions. The gap between
Scenario IV and Scenario I reveals the irreducible loss from mismatch-induced mea-

surement degradation.

Metrics. Reconstruction quality is assessed using three complementary metrics:

e PSNR (peak signal-to-noise ratio, in dB): the primary metric, computed per scene
and averaged. For signals normalized to [0,1], PSNR = 10log;,(1/MSE). For SPC
data normalized to [0, 255], the peak value is 255.
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e SSIM (structural similarity index): captures perceptual quality including luminance,
contrast, and structural components, computed with a Gaussian window of width 11

and standard deviation 1.5.

e SAM (spectral angle mapper): for hyperspectral modalities (CASSI), measures the
angle between predicted and true spectral vectors at each spatial location, reported

in degrees. Lower is better.

Datasets.

e CASSI: 10 scenes from the KAIST dataset®, each a 256 x 256 x 28 spectral cube (28
spectral bands from 450 nm to 650 nm). Data range [0, 1].

e CACTI: 6 benchmark videos, each 256 x 256 x 8 (8 temporal frames encoded per
snapshot). Data range [0, 1].

e SPC: 11 natural images from the Set1ll benchmark, each 256 x 256 grayscale. Data
range [0, 255].

All per-scene metrics are reported individually as well as averaged, and all reconstruction

arrays are saved as NumPy NPZ files.

Experimental Details

Hardware. All experiments are conducted on a single NVIDIA GPU. Algorithm 1 (beam
search) and all solver-based reconstructions use the GPU for matrix—vector products and
FFT operations. Algorithm 2 (gradient refinement) additionally uses PyTorch automatic

differentiation on the same GPU.

CASSI configuration. The coded aperture snapshot spectral imaging (CASSI) system
uses a TSA-Net binary mask of dimensions 256 x 256, with 28 spectral bands dispersed along
the spatial dimension. The five-parameter mismatch model ¥ = (dz, dy, 0, a1, «) describes:
mask spatial shift in z (dz, pixels), mask spatial shift in y (dy, pixels), mask rotation angle
(0, degrees), dispersion slope (a1, pixels per band), and dispersion axis angle (a, degrees).
An optional sixth parameter, PSF blur width (opef, pixels), is available but not used in the
primary experiments. For the primary mismatch experiment (validated by InverseNet), the
true mismatch parameters are 1;,,. = (dr = 0.5 px, dy = 0.3 px, § = 0.1°, a1 = 2.02, a =
0.15°). Solvers evaluated include TwIST??, GAP-TV'", DGSMP?*, MST-L°, and CST-
L?*, all of which receive the same operator and differ only in their reconstruction algorithm.

The supplementary per-scene analysis additionally includes DeSCI?® and HDNet '®.
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CACTI configuration. The coded aperture compressive temporal imaging system uses
binary temporal masks of dimensions 256 x 256, encoding 8 video frames into a single
snapshot measurement. Mismatch is parameterized as a temporal mask timing offset (sub-

frame shift). The default solver is GAP-TV with total-variation regularization.

SPC configuration. The single-pixel camera uses random binary measurement patterns
at three compression ratios: 10%, 25%, and 50% (r = m/n € {0.10,0.25,0.50}). Mismatch
is modeled as a multiplicative gain bias on the measurement matrix. The default solver is

ADMM-TYV with total-variation regularization and a wavelet sparsifying transform.

MRI configuration. Cartesian k-space sampling with 4x acceleration (25% of k-space
lines acquired). Mismatch is parameterized as a 5% multiplicative error in the coil sensitivity
maps used for parallel imaging reconstruction. The default solver is SENSE with ¢;-wavelet

regularization.

CT configuration. Fan-beam geometry with 180 projections over 180°. Mismatch is
modeled as a center-of-rotation (CoR) offset, which produces characteristic arc artifacts in
the reconstruction. The default solver is filtered back-projection (FBP) with a Ram-Lak
filter, supplemented by iterative SART for comparison.

Statistical Analysis

Per-scene reporting. All metrics are reported per scene, not merely as dataset averages.
This enables identification of scene-dependent failure modes (e.g., spectrally flat scenes that

are inherently harder for CASSI, or textureless regions that challenge SPC).

Summary statistics. For each modality and scenario, we report the mean 4+ standard
deviation of PSNR, SSIM, and SAM across all scenes. For CASSI (10 scenes), we addition-

ally report the per-band PSNR to assess spectral uniformity of reconstruction quality.

Recovery ratio confidence intervals. The recovery ratio p (Equation (5)) is a ratio of
differences and therefore sensitive to noise in the constituent PSNR values. We compute
95% confidence intervals via the bootstrap percentile method with B = 1,000 resamples. At
each bootstrap iteration, we resample the scene set with replacement, recompute the mean
PSNR for each scenario, and derive p. The 2.5th and 97.5th percentiles of the bootstrap
distribution define the 95% CI.
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Parameter recovery accuracy. For mismatch correction experiments, we report the

root-mean-square error (RMSE) between the estimated and true mismatch parameters:

1 Nscene

RMSEk = (ékﬂ, - ek,true)2 (6)

scene
=1

where k£ indexes the mismatch parameter, ¢ indexes the scene, and Ngcene is the number of
test scenes. Uncertainty in the RMSE is estimated via bootstrap (B = 1,000).

Ablation significance. Ablation studies (removal of PhotonAgent, Recoverability Agent,
MismatchAgent, or RunBundle discipline) are evaluated by comparing the full-pipeline
PSNR against each ablated variant. We report the PSNR difference APSNR, per modality
and verify that each component contributes > 0.5 dB across all depth modalities, establish-

ing practical significance.

Code and Data Availability

Source code. The complete PWM framework, including all agents, the OperatorGraph
compiler, correction algorithms, YAML registries, and evaluation scripts, is released as
open-source software under the MIT license at https://github.com/integritynoble/
Physics_World_Model. The codebase is organized into two Python packages: pwm_core
(core framework, agents, graph compiler, calibration algorithms) and pwm AI Scientist

(automated experiment generation and analysis).

Reconstruction data. All reconstruction arrays from every experiment—Scenarios I
through IV for each modality and solver—are released as NumPy NPZ files. Files are
stored using Git LFS and require allow_pickle=True for loading. Data ranges are stan-
dardized: CASSI and CACTI reconstructions are normalized to [0, 1]; SPC reconstructions
are in [0, 255].

Experiment manifests. Every experiment is recorded in a RunBundle v0.3.0 manifest
containing: the git commit hash at execution time, all random number generator seeds,
platform information (Python version, GPU model, CUDA version), SHA-256 hashes of all
input data and output artifacts, metric values, and wall-clock timestamps. These manifests

enable exact reproduction of every reported result.

Registry data. All 9 YAML registries (7,034 lines total) that drive the agent system—
including modality definitions, graph templates, photon models, mismatch databases, com-
pression tables, solver configurations, primitive specifications, dataset paths, and acceptance

thresholds—are publicly available in the repository under packages/pwm_core/contrib/.
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The ExperimentSpec JSON schemas used for pipeline input validation are included along-

side worked examples in examples/.
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Figure 1 | PWM overview. The Physics World Models pipeline. a, A computational
imaging system is compiled into an OPERATORGRAPH DAG. b, The TRIAD LAwW diagnos-
tic agents evaluate each gate. c, The dominant gate is identified and a TRIADREPORT is
produced. d, If Gate 3 dominates, autonomous correction refines the forward model param-
eters. e, The original solver is re-run with the corrected operator, recovering reconstruction

quality without retraining.

Figure 2 | OperatorGraph IR and Physics Fidelity Ladder. a, Example OPERA-
TORGRAPH DAGs for three modalities: CASSI (photon), MRI (spin), and CT (particle).
FEach node wraps a primitive operator; edges define data flow. b, The Physics Fidelity
Ladder. Tier 1: linear shift-invariant. Tier 2: linear shift-variant. Tier 3: nonlinear
ray/wave-based. Tier 4: full-wave/Monte Carlo. ¢, Summary statistics: 89 templates, 64

modalities, 5 carrier families.

Figure 3 | Triad Law structure and gate binding. a, Decision tree for the TRIAD
LAw: each imaging failure is routed through Gate 1, Gate 2, and Gate 3 to produce a
TRIADREPORT. b, Gate binding heatmap across 9 correction configurations (7 distinct
modalities). Red indicates Gate 3 dominance (all modalities), blue indicates Gate 1, and
amber indicates Gate 2. ¢, Recovery ratio p distribution across all 9 correction configura-

tions.

Figure 4 | 16-modality correction results. Bar chart showing correction gain Aoy
(dB) for each of the 9 correction configurations (7 distinct modalities), grouped by carrier
family. Photon modalities (CASSI, CACTI, SPC, Lensless, Ptychography) in blue; spin
(MRI) in purple; X-ray (CT) in red; generic (Matrix) in grey.

Figure 5 | CASSI and CACTI deep dive. a, CASSI: PSNR across 4 scenarios for
GAP-TV, MST-L, and HDNet under combined mask-geometry-plus-dispersion mismatch.
The uniform collapse under Scenario II (range 20.83-21.88 dB) confirms operator-driven
failure; oracle recovery varies by solver (p = 0.22-0.46). b, CACTI: EfficientSCI across 4
scenarios, showing 20.85 dB mismatch degradation and p > 1.0 (full recovery with regu-
larization benefit). ¢, Example reconstructed spectral datacubes: Ideal, Mismatched, and

Corrected.

Figure 6 | Zero-shot generalization across carrier families. Correction gain (dB)
when beam-search and gradient-refinement hyperparameters are tuned on photon-domain
modalities and transferred without modification to electron, spin, acoustic, and particle do-
mains. Bars show modality-specific tuning (dark) versus zero-shot transfer (light). Transfer
efficiency is high across all carrier families, confirming the carrier-agnostic nature of the PwM

correction pipeline.
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