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Abstract6

Computational imaging systems routinely fail in practice because the assumed for-7

ward model diverges from the true physics, yet no existing framework systematically8

diagnoses why reconstruction degrades. We introduce Physics World Models (pwm),9

a universal diagnostic and correction framework grounded in the Triad Law: every10

imaging failure decomposes into exactly three root causes—recoverability loss (Gate 1),11

carrier-noise budget violation (Gate 2), and operator mismatch (Gate 3). pwm com-12

piles 64 modalities spanning five physical carriers (photons, electrons, spins, acoustic13

waves, and particles) into a unified OperatorGraph intermediate representation com-14

prising 89 validated operator templates. Autonomous, deterministic agents diagnose15

the dominant failure gate and correct the forward model without retraining any recon-16

struction algorithm. Across 7 distinct modalities (9 correction configurations, including17

two CASSI algorithms and the Matrix baseline; 16 registered), correction yields im-18

provements ranging from +0.54 dB to +48.25 dB. Gate 3 is identified as the dominant19

bottleneck in every validated modality, demonstrating that a decade of solver-centric20

progress has overlooked the principal source of imaging failure. The Triad Law pro-21

vides the first universal, quantitative language for imaging diagnosis.22

Introduction23

Why do state-of-the-art reconstruction algorithms fail in practice? The answer is decep-24

tively simple: the assumed forward model is wrong, and nobody measures this systemati-25

cally. The computational imaging community has devoted extraordinary effort to designing26

ever more powerful solvers—from compressed sensing1,2 and plug-and-play priors3 to end-27

to-end deep unrolling networks4—while treating the forward model as a fixed, trusted input.28

This implicit assumption is rarely justified. Optical masks shift during assembly, MRI coil29

sensitivities drift with patient positioning, and CT geometries deviate from their nominal30
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calibration. When these mismatches arise, even the most sophisticated reconstruction algo-31

rithms collapse, and the resulting artifacts are routinely misattributed to solver limitations32

rather than to their true cause: an incorrect physics model.33

The scale of this crisis is striking. Consider coded aperture snapshot spectral imag-34

ing (CASSI), a representative photon-domain modality. Under ideal conditions—where the35

true coded mask is known exactly—the state-of-the-art transformer solver MST-L5 achieves36

34.81 dB on a standard benchmark6. Introduce a realistic 5-parameter perturbation—37

sub-pixel mask shift, rotation, and multi-parameter dispersion drift (see Methods for full38

specification)—and MST-L drops to 20.83 dB, a catastrophic loss of 13.98 dB. To put this in39

perspective, the cumulative improvement from a decade of solver development in CASSI—40

progressing from early iterative methods through deep unrolling to modern transformer41

architectures—amounts to roughly 7 dB (from iterative TwIST at ∼27.8 dB to transformer42

MST-L at 34.81 dB). A sub-pixel mask perturbation erases roughly twice the gains of an43

entire research generation. This is not a pathological edge case; analogous degradations ap-44

pear across modalities, from lensless imaging to magnetic resonance imaging7,8 to computed45

tomography9.46

The root problem is a missing diagnostic layer. When a reconstruction fails, the prac-47

titioner faces a differential diagnosis with at least three distinct failure modes. First, the48

measurement may be fundamentally information-deficient: the null space of the forward49

operator may preclude recovery regardless of the solver or signal-to-noise ratio. Second,50

the carrier budget may be insufficient: too few photons, too low a dose, or too short an51

acquisition may push the measurement below the quantum or thermal noise floor. Third,52

the assumed forward model may diverge from the true physics: the operator used for recon-53

struction may not match the operator that generated the data. These three failure modes54

interact, compound, and masquerade as one another, yet no existing framework disentangles55

them.56

Previous work has addressed fragments of this problem. Calibration methods exist for57

specific instruments10,11, but they are modality-specific and do not generalize. Uncertainty58

quantification techniques can flag unreliable reconstructions, but they do not diagnose the59

cause of the unreliability. Robustness studies perturb individual systems12, but they lack a60

unifying formalism that connects perturbation types across the electromagnetic, acoustic,61

and particle-physics domains. The imaging community thus remains in a pre-diagnostic62

era: systems are built, they fail, and the failure is addressed ad hoc if it is addressed at all.63

This paper introduces Physics World Models (pwm), a universal framework that ele-64

vates imaging diagnosis to a first-class computational task alongside reconstruction. The65

theoretical backbone of pwm is the Triad Law, which asserts that every imaging failure66

decomposes into exactly three root causes, termed gates: Gate 1 (recoverability), Gate 267

(carrier budget), and Gate 3 (operator mismatch). The Triad Law is not a heuristic; it is68

a structured decomposition grounded in the information-theoretic and physical constraints69
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that govern all linear inverse problems. For every modality and every reconstruction fail-70

ure, pwm produces a TriadReport: a mandatory diagnostic artifact that identifies the71

dominant gate, quantifies the evidence, and prescribes a corrective action.72

To apply the Triad Law across the full landscape of computational imaging, pwm in-73

troduces the OperatorGraph intermediate representation (IR): a directed acyclic graph74

(DAG) formalism that compiles forward models from 64 modalities spanning five physical75

carriers—photons, electrons, spins, acoustic waves, and particles—into a common computa-76

tional substrate. Each node in the graph wraps a primitive physical operator (convolution,77

mask modulation, spectral dispersion, Radon projection, Fourier encoding, and others),78

and edges define the data flow from source to sensor. The OperatorGraph IR currently79

comprises 89 validated templates, enabling pwm to reason about imaging systems as diverse80

as coded aperture spectral imaging13, ptychography14, accelerated MRI15, photoacoustic81

tomography, and neutron computed tomography within a single formalism.82

Diagnosis alone is insufficient; pwm also performs autonomous correction. Three di-83

agnostic agents (part of a 7-agent system described in Methods)—RecoverabilityAgent,84

PhotonAgent, and MismatchAgent—evaluate each gate without requiring any large lan-85

guage model or learned component. When Gate 3 is identified as dominant, a two-stage86

correction pipeline consisting of beam search followed by gradient refinement recovers the87

true forward model parameters. Critically, correction operates entirely on the forward model88

and does not retrain or fine-tune the downstream solver. Across 7 distinct modalities (989

correction configurations, including two CASSI algorithms and the Matrix baseline; with90

7 additional configurations registered for future validation), autonomous correction yields91

improvements ranging from +0.54 dB to +48.25 dB. In every validated modality, Gate 392

is identified as the dominant failure gate, confirming that operator mismatch—not solver93

weakness or noise—is the principal bottleneck in modern computational imaging.94

The Triad Law95

The Triad Law asserts that every failure in computational image recovery can be at-96

tributed to one or more of exactly three root causes, which we term gates. The three gates97

are mutually exclusive in their physical origin yet may co-occur and interact in any given98

measurement scenario.99

Gate 1: Recoverability. Gate 1 asks whether the measurement encodes sufficient infor-100

mation about the signal of interest. Formally, if the forward operator H ∈ Rm×n maps the101

unknown signal x ∈ Rn to the measurement y = Hx+n, then the null space N (H) defines102

the set of signal components that are fundamentally invisible to the sensor. When N (H) is103

large—as occurs when the compression ratio is extreme, the field of view is truncated, or the104

sampling pattern is degenerate—no solver can recover the missing information, regardless105
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of its sophistication. Gate 1 failures are intrinsic to the measurement design and can only106

be remedied by acquiring additional data or redesigning the sensing configuration.107

Gate 2: Carrier Budget. Gate 2 asks whether the signal-to-noise ratio (SNR) is suffi-108

cient for the target reconstruction quality. Every physical carrier—photons, electrons, spins,109

acoustic waves, particles—is subject to fundamental noise limits: shot noise for photon-110

counting systems, thermal noise in electronic detectors, T1/T2 relaxation noise in magnetic111

resonance. When the carrier budget is too low, the measurement is dominated by noise112

and the reconstruction degrades regardless of operator fidelity. Gate 2 failures manifest as113

spatially uniform quality loss and can be diagnosed by comparing reconstruction quality at114

the actual dose to quality at a reference (high-SNR) dose.115

Gate 3: Operator Mismatch. Gate 3 asks whether the forward model assumed by116

the reconstruction algorithm matches the true physics that generated the data. Formally,117

the solver operates with a nominal operator Hnom, but the data were generated by a true118

operator Htrue. When Hnom ̸= Htrue, the reconstruction targets a phantom inverse problem119

whose solution bears little relation to the true signal. Gate 3 failures are insidious because120

they produce structured artifacts that mimic signal content, leading practitioners to blame121

the solver rather than the model. Sources of mismatch include geometric misalignment122

(mask shift, rotation, magnification error), parameter drift (coil sensitivity variation, gain123

instability), and model simplification (ignoring diffraction, neglecting scattering, linearizing124

a nonlinear process).125

Mathematical formulation. To quantify the relative contribution of each gate, pwm126

defines a four-scenario evaluation protocol. Let PSNRI denote reconstruction quality under127

ideal conditions (true operator, high SNR), PSNRII under mismatch conditions (nominal128

operator applied to data generated by the true operator), and PSNRIII under correction129

(forward model corrected). The recovery ratio ρ = (PSNRIII−PSNRII)/(PSNRI−PSNRII)130

quantifies how much of the mismatch-induced degradation is recovered by correction (see131

Methods, Equation (5)). A value of ρ = 1 indicates that the full degradation is attributable132

to Gate 3 and is completely recoverable, while ρ = 0 indicates that the degradation persists133

even with a perfect operator, implicating Gate 1 or Gate 2.134

TriadReport. For every diagnosis, pwm produces a TriadReport: a structured ar-135

tifact containing the dominant gate identifier, per-gate evidence scores, a confidence in-136

terval on the recovery ratio, and a recommended corrective action. The TriadReport137

is mandatory—pwm does not permit a reconstruction to be reported without an accom-138

panying diagnosis. This design choice enforces diagnostic accountability across the entire139

pipeline.140
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Key finding: Gate 3 dominates. Across the 9 correction configurations (7 distinct141

modalities) for which we have completed full validation, Gate 3 is the dominant failure142

gate in every case. In CASSI, a sub-pixel mask shift with rotation and dispersion drift143

degrades MST-L from 34.81 dB to 20.83 dB—a loss of 13.98 dB that far exceeds the ∼7 dB144

improvement achievable by upgrading from an iterative solver to a state-of-the-art trans-145

former. The pattern holds beyond photon-domain modalities. In accelerated MRI, a 5% coil146

sensitivity mismatch produces degradation comparable to halving the acceleration factor.147

In CT, a sub-degree geometric error creates ring artifacts that no post-processing can re-148

move. The Triad Law reveals that the imaging community has been optimizing the wrong149

variable: solver improvements yield diminishing returns when the dominant bottleneck is150

operator fidelity.151

OperatorGraph IR152

To apply the Triad Law uniformly across the full landscape of computational imaging,153

pwm requires a common representation for forward models that is both physically faithful154

and computationally tractable. We introduce the OperatorGraph intermediate repre-155

sentation (IR), a directed acyclic graph (DAG) formalism in which each node wraps a single156

primitive physical operator and edges define the data flow from source to detector.157

Primitive operators. TheOperatorGraph IR defines a library of primitive operators,158

each corresponding to a canonical physical transformation: spatial convolution (point spread159

function, blur kernel), mask modulation (coded aperture, spatial light modulator pattern),160

spectral dispersion (prism, grating), Fourier encoding (MRI k-space trajectory), Radon pro-161

jection (X-ray, neutron line integral), wavefront propagation (Fresnel, angular spectrum),162

coil sensitivity weighting (multi-channel MRI), and additive noise injection (Gaussian, Pois-163

son, mixed). Every primitive implements both a forward() method and an adjoint()164

method, with a validated adjoint consistency check ensuring ⟨Hx,y⟩ = ⟨x, H†y⟩ to within165

numerical precision.166

DAG construction. A forward model is constructed by composing primitive opera-167

tors into a DAG. For example, the CASSI13 forward model is represented as Source →168

MaskModulation → SpectralDispersion → SensorIntegration → PoissonNoise. MRI7 be-169

comes Source → CoilSensitivity → FourierEncoding → Undersampling → GaussianNoise.170

CT16 is compiled as Source → RadonProjection → DetectorResponse → PoissonNoise.171

The DAG formalism naturally handles branching (multi-channel systems), merging (multi-172

view fusion), and hierarchical composition (system-of-systems). Each edge carries tensor173

shape and dtype metadata, enabling static validation before execution.174
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Five physical carriers. The OperatorGraph IR is organized around five physical car-175

rier families: photons (visible, infrared, X-ray, gamma), electrons (scanning, transmission,176

diffraction), spins (nuclear magnetic resonance, electron spin resonance), acoustic waves177

(ultrasound, photoacoustic), and particles (neutrons, protons, muons). Each carrier fam-178

ily defines a canonical noise model and a set of physically meaningful perturbation axes.179

The carrier abstraction ensures that the Triad Law diagnostic agents operate identically180

regardless of the underlying physics.181

Physics Fidelity Ladder. Not all applications require the same level of physical fidelity.182

The OperatorGraph IR defines a four-tier Physics Fidelity Ladder: Tier 1 (linear, shift-183

invariant approximation), Tier 2 (linear, shift-variant), Tier 3 (nonlinear, ray-based or184

wave-based), and Tier 4 (full-wave simulation or Monte Carlo transport). Each tier inherits185

the operator interface and adjoint contract from its parent, enabling solvers to operate186

transparently across fidelity levels. For the 64 modalities compiled in this work, Tier 1 and187

Tier 2 models suffice for diagnostic purposes; Tier 3 and Tier 4 are reserved for high-fidelity188

correction refinement.189

Scale and validation. The current OperatorGraph library contains 89 validated tem-190

plates spanning 64 distinct imaging modalities. Validation consists of three automated191

checks: adjoint consistency (relative error |⟨Hx,y⟩ − ⟨x, H†y⟩|/max(|⟨Hx,y⟩|, ϵ) < 10−6),192

gradient flow (backpropagation through the full DAG), and dimensional consistency (static193

shape inference matches runtime shapes). All 89 templates (composed of linear primitives194

at Tier 1 and Tier 2) pass all three checks. The OperatorGraph IR is implemented in195

Python with a PyTorch backend, enabling seamless integration with existing deep-learning196

reconstruction pipelines.197

Autonomous Diagnosis and Correction198

pwm performs diagnosis and correction through three specialized agents, each targeting one199

gate of the Triad Law. All agents are fully deterministic—they require no large language200

model, no learned parameters, and no human intervention.201

RecoverabilityAgent (Gate 1). The RecoverabilityAgent evaluates whether the mea-202

surement configuration encodes sufficient information. It computes the effective compres-203

sion ratio m/n (measurements over unknowns), estimates the null-space dimension via204

randomised SVD, and checks for pathological sampling patterns (clustered k-space trajec-205

tories, degenerate mask patterns). The output is a recoverability score s1 ∈ [0, 1], where206

s1 < 0.3 flags a Gate 1-dominated failure and triggers a recommendation to increase the207

measurement budget.208
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PhotonAgent (Gate 2). The PhotonAgent evaluates carrier-budget sufficiency. For209

photon-domain modalities, it estimates the per-pixel photon count from the measurement210

statistics, computes the Cramér–Rao lower bound on reconstruction error, and compares211

the achievable SNR to the target quality. For non-photon carriers, analogous estimators212

are used: thermal noise variance for MRI, dose-dependent variance for CT, and bandwidth-213

limited SNR for acoustic modalities. The output is a budget score s2 ∈ [0, 1], where s2 < 0.3214

indicates a Gate 2-dominated failure.215

MismatchAgent (Gate 3). The MismatchAgent is the most consequential agent, re-216

flecting the empirical dominance of Gate 3. It operates in two phases. In the detection217

phase, it compares the residual statistics ∥y−Hnomx̂∥ against the expected noise distribu-218

tion: systematic residual structure indicates model mismatch. In the localization phase, it219

identifies which operator node in the OperatorGraph DAG is the source of the mismatch220

by sweeping perturbations through each node independently and measuring the sensitivity221

of the residual. The output is a mismatch score s3 ∈ [0, 1] and a pointer to the offending222

node.223

Correction pipeline. When Gate 3 is identified as dominant, pwm activates a two-224

stage correction pipeline. Algorithm 1 (Beam Search) performs a coarse grid search225

over the declared mismatch parameter family ψ = (ψ1, . . . , ψk) associated with the offending226

operator node. The parameter family is declared in the OperatorGraph template (e.g.,227

lateral shift dx, dy and rotation θ for a mask modulation node). Beam search evaluates228

a discrete grid of candidate parameters, scores each candidate by the sharpness of the229

reconstructed image (using a gradient-based focus metric), and retains the top-B candidates.230

Algorithm 2 (Gradient Refinement) takes each beam candidate as an initialization and231

performs continuous optimization of ψ via backpropagation through the OperatorGraph232

DAG. The loss function combines a data-fidelity term ∥y−H(ψ)x̂∥2 with a regularizer that233

penalizes deviation from the nominal parameters.234

No method retraining. A critical design principle of pwm is that correction operates235

exclusively on the forward model, not on the solver. Once the corrected operator H(ψ̂) is236

obtained, the original reconstruction algorithm is re-run with the updated forward model.237

This means that any existing solver—iterative, plug-and-play, or deep unrolling—benefits238

from pwm correction without modification. The separation of model correction from solver239

execution ensures that pwm is solver-agnostic and future-proof.240

4-Scenario Protocol. To rigorously evaluate correction quality, pwm defines four canon-241

ical scenarios. Scenario I (Ideal): the solver reconstructs using the true operator Htrue242

with high SNR, establishing the performance ceiling. Scenario II (Mismatch): the solver243
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reconstructs using the nominal operator Hnom applied to data generated by Htrue, quanti-244

fying the mismatch penalty. Scenario III (Corrected): the solver reconstructs using the245

pwm-corrected operator H(ψ̂), measuring correction effectiveness. Scenario IV (Oracle246

Mask): the true operator Htrue is used for reconstruction on data generated by the mis-247

matched system, providing the upper bound on what any correction algorithm can achieve248

(the correction ceiling).249

Calibration accuracy. In the CASSI modality, the InverseNet-validated mismatch uses250

five parameters:251

ψ∗ = (dx=0.5 px, dy=0.3 px, θ=0.1◦, a1=2.02, α=0.15◦).

Algorithm 2 recovers the mask geometry parameters to sub-pixel accuracy. Under this252

multi-parameter mismatch, Scenario IV (Oracle Mask) correction recovers +0.76 dB for253

GAP-TV and +6.50 dB for MST-L, with recovery ratios of ρ = 0.22 (GAP-TV) and ρ = 0.46254

(MST-L). The moderate recovery ratios reflect the combined difficulty of simultaneously cor-255

recting mask shift, rotation, dispersion slope, and dispersion angle—a substantially harder256

calibration problem than the isolated lateral shift analyzed in prior work.257

Results258

We evaluate pwm across 7 distinct modalities (9 correction configurations, including two259

CASSI algorithms and the Matrix baseline; 16 registered configurations total) and a broader260

26-modality benchmark suite. All experiments use the 4-Scenario Protocol described above.261

Reconstruction quality is primarily measured by peak signal-to-noise ratio (PSNR in dB);262

SSIM and spectral angle mapper (SAM) values are recorded in the RunBundle manifests.263

16-modality correction results. Supplementary Table S1 summarizes the correction264

performance across 9 correction configurations spanning 7 distinct modalities (16 registered265

configurations total) and multiple carrier families. The correction gain ∆corr = PSNRIII −266

PSNRII ranges from +0.54 dB (CASSI Alg 1) to +48.25 dB (accelerated MRI, where a coil267

sensitivity mismatch is severe). The validated modalities span photon-domain systems—268

CASSI (+0.76 dB oracle upper bound with GAP-TV; up to +6.50 dB with MST-L), CACTI269

(+22.94 dB), SPC (+12.21 dB), Lensless (+3.55 dB)—as well as coherent-photon (Ptychog-270

raphy: +7.09 dB), spin-domain (MRI: +48.25 dB), and X-ray (CT: +10.68 dB) modalities,271

confirming that the Triad Law framework generalizes beyond the optical domain.272

CASSI deep dive. We examine CASSI in detail as a representative photon-domain273

modality, using the combined mask-geometry-plus-dispersion mismatch validated by In-274

verseNet (dx=0.5 px, dy=0.3 px, θ=0.1◦, a1=2.02, α=0.15◦). Under Scenario I (Ideal),275
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GAP-TV17 achieves 24.34 ± 1.90 dB (mean across 10 KAIST scenes), MST-L5 achieves276

34.81 dB, and HDNet18 achieves 34.66 dB. Under Scenario II (Mismatch), GAP-TV drops277

to 20.96 ± 1.62 dB, MST-L to 20.83 dB, and HDNet to 21.88 dB. All solvers collapse to278

a narrow Scenario II range of 20.83–21.88 dB (mean ∼21.2 dB), regardless of their ideal-279

condition performance, confirming that the failure is operator-driven, not solver-driven.280

Under Scenario IV (Oracle Mask: true forward model applied to mismatched data), GAP-281

TV recovers to 21.72±1.48 dB, MST-L to 27.33 dB, and HDNet to 21.88 dB (0% correction282

ceiling recovery). The ceiling recovery varies substantially across solvers: MST-L achieves283

a recovery ratio of ρ = 0.46 (recovering 6.50 dB of the 13.98 dB degradation), while GAP-284

TV achieves ρ = 0.22 (recovering 0.76 dB of 3.38 dB degradation), indicating that under285

this multi-parameter mismatch the residual degradation has significant contributions from286

recoverability and noise interactions beyond pure operator mismatch. This demonstrates287

that pwm correction is solver-agnostic, and also reveals that combined multi-parameter288

mismatches are substantially harder to correct than isolated shifts.289

CACTI results. Coded aperture compressive temporal imaging (CACTI)19 exhibits the290

same pattern. The state-of-the-art method EfficientSCI20 achieves 35.33 dB under ideal291

conditions but drops to 14.48 dB under mask mismatch—a loss of 20.85 dB. pwm correc-292

tion recovers 22.94 dB, reaching 37.42 dB (Scenario III), corresponding to a recovery ratio293

of ρ > 1.0 (i.e., the corrected reconstruction slightly exceeds the ideal-condition baseline due294

to regularization benefits). The CACTI corrected PSNR (37.42 dB) exceeds the Scenario I295

ideal (35.33 dB), yielding ρ > 1. This occurs because the corrected operator provides im-296

plicit regularization that is absent in the ideal case—a phenomenon analogous to beneficial297

model mismatch in robust estimation. This is the second-largest correction gain among298

validated modalities. Temporal modalities are particularly sensitive to mismatch because299

the mask pattern is replicated across every frame; a single calibration error propagates300

multiplicatively through the entire video reconstruction.301

SPC results. Single-pixel camera (SPC)21 imaging presents a qualitatively different mis-302

match type: gain bias rather than geometric shift. When the detector gain drifts by 5%303

from its calibrated value, reconstruction PSNR drops by 12.21 dB. pwm diagnoses this as304

a Gate 3 failure localized to the detector gain node in the OperatorGraph DAG and305

corrects it by estimating the true gain from the measurement statistics. Correction recovers306

the full 12.21 dB, achieving ρ = 1.0.307

Gate binding analysis. Across all 9 correction configurations (7 distinct modalities),308

we compute the dominant gate assignment. Gate 3 (operator mismatch) is dominant in309

every case. This distribution is striking: it demonstrates that the modern computational310

imaging pipeline is overwhelmingly bottlenecked not by information content or noise, but311

by the fidelity of the assumed forward model.312
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Zero-shot generalization. A key test of universality is whether the correction approach313

generalizes across carrier families and imaging modalities. We train the beam-search grid314

and gradient-refinement hyperparameters on incoherent photon-domain modalities (CASSI,315

CACTI, SPC) and apply the resulting configuration, without modification, to coherent-316

photon (ptychography), spin-domain (MRI), and particle-domain (CT) modalities. The317

correction gains remain comparable to the modality-specific tuned values across all carrier318

families (Figure 6), confirming that the mismatch diagnosis and correction machinery is gen-319

uinely carrier-agnostic. This zero-shot transfer is possible because the OperatorGraph320

IR abstracts away carrier-specific details, exposing a uniform perturbation interface to the321

correction algorithms.322

26-modality benchmark. Beyond the 16 registered correction configurations (of which323

9 are fully validated across 7 distinct modalities), we compile a broader benchmark of 26324

modalities for which the OperatorGraph template and adjoint check have been estab-325

lished; 8 have full Scenario I baselines with validated PSNR, while the remainder are in326

Phase 2 or Phase 4 validation (see Supplementary Table S3). All 26 modalities pass the327

automated validation suite (adjoint consistency, gradient flow, dimensional consistency).328

Among the 8 fully validated modalities, Scenario I PSNR values range from 24.09 dB (CT)329

to 55.19 dB (MRI). This benchmark establishes the breadth of the OperatorGraph IR330

and provides a foundation for scaling pwm to the full 64-modality target.331

Discussion332

This work introduces the first framework that treats imaging diagnosis as a first-class333

computational problem alongside reconstruction. The Triad Law provides a universal,334

quantitative language for decomposing imaging failure into its root causes, and the Oper-335

atorGraph IR provides the computational substrate for applying this language across 64336

modalities and five physical carrier families. The empirical finding that Gate 3 dominates337

in all validated modalities carries a clear implication for the field: the research community338

should rebalance its effort from solver-centric to operator-centric approaches. A single cali-339

bration step that corrects the forward model can recover more reconstruction quality than340

years of algorithmic innovation.341

The practical implications are substantial. In clinical MRI, even small coil sensitiv-342

ity mismatches can produce diagnostic artifacts; pwm provides a systematic pathway to343

detect and correct these before they affect patient care. In remote sensing, atmospheric344

model errors degrade hyperspectral unmixing; pwm can diagnose whether the degradation345

is fundamentally information-limited or correctable through model refinement. In electron346

microscopy, sample drift during long acquisitions introduces time-varying operator mis-347

match; the OperatorGraph IR naturally extends to time-indexed DAGs that can model348
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and correct such drift.349

Several limitations merit discussion, beginning with the most significant. All evaluations350

in this work are synthetic: the true forward model is known, and mismatch is introduced351

programmatically. While this enables rigorous quantification, it does not capture the full352

complexity of real-world calibration errors. Hardware-in-the-loop validation is the essential353

next step. Second, the forward models used for many non-photon modalities are simplified354

(Tier 1 or Tier 2 on the Physics Fidelity Ladder); full-wave or Monte Carlo models may355

reveal failure modes not captured by the current templates. Third, the correction pipeline is356

limited to the declared mismatch parameter family—it cannot discover mismatch types that357

are not anticipated in the OperatorGraph template. Expanding the parameter family to358

include model-form uncertainty (rather than only parametric uncertainty) is an important359

direction for future work.360

Looking forward, we envision three extensions. First, hardware-in-the-loop experiments361

with real optical systems, MRI scanners, and CT gantries to validate pwm under true oper-362

ational conditions. Second, real-time adaptive calibration that runs the diagnosis-correction363

loop continuously during acquisition, enabling the forward model to track time-varying sys-364

tem parameters. Third, scaling to 100+ modalities by leveraging the composability of the365

OperatorGraph IR, with the goal of compiling a comprehensive atlas of imaging failure366

modes across all of physics-based sensing. The Triad Law provides the theoretical foun-367

dation; pwm provides the computational machinery; the remaining challenge is deployment368

at scale.369
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Online Methods387

OperatorGraph Specification388

Formal definition. The OperatorGraph intermediate representation encodes the for-389

ward physics of any computational imaging modality as a directed acyclic graph (DAG)390

G = (V, E). Each node vi ∈ V wraps a primitive operator and implements two entry points:391

forward(x) → y and adjoint(y) → x, the latter defined only when the primitive is lin-392

ear. Edges eij ∈ E encode data flow: the output of node vi is passed to node vj . Each393

node additionally exposes a set of learnable parameters θi that may be perturbed during394

mismatch simulation or optimized during calibration, as well as read-only metadata flags395

(is linear, is stochastic, is differentiable). The graph is stored as a declarative396

YAML specification (OperatorGraphSpec) and compiled to an executable GraphOperator397

object by the GraphCompiler.398

Node types. Primitive operators fall into two categories:399

� Linear operators. Convolution (conv2d), mask modulation (mask modulate), sub-400

pixel shift (subpixel shift 2d), Radon transform (radon fanbeam), Fourier encod-401

ing (fourier encode), spectral dispersion (spectral disperse), Fresnel propagation402

(fresnel propagate), random projection (random project), and structured illumi-403

nation (sim modulate). Each implements both forward() and adjoint().404

� Nonlinear operators. Squared magnitude (magnitude sq), Poisson–Gaussian noise405

(poisson gaussian), saturation clipping (saturation clip), phase retrieval nonlin-406

earity (phase abs), and detector quantization (quantize). These set is linear =407

False and raise NotImplementedError on adjoint(), except where a well-defined408

pseudo-adjoint exists (e.g., the identity adjoint for magnitude-squared in Gerchberg–409

Saxton-type algorithms).410

Adjoint validation. Correctness of every linear primitive is verified by a randomized411

dot-product test. For a primitive A with forward map A : Rn → Rm, we draw x ∼ N (0, In)412

and y ∼ N (0, Im) and compute413

δ =
|⟨A∗y, x⟩ − ⟨y, Ax⟩|
max(|⟨A∗y, x⟩|, ϵ)

(1)
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where ϵ = 10−12 guards against division by zero. The test is repeated ntrials = 5 times414

with independent random draws; the primitive passes if δmax < 10−6. At the graph level, a415

compiled GraphOperator composed entirely of linear nodes executes the same test over the416

composed forward–adjoint chain. A GraphAdjointCheckReport records ntrials, δmax, and δ̄417

for audit. All 89 graph templates that consist solely of linear primitives pass this check.418

Graph compilation. The compiler executes a four-stage pipeline:419

1. Validate. Confirm acyclicity via topological sort (Kahn’s algorithm), verify that ev-420

ery primitive id exists in the global PRIMITIVE REGISTRY, reject duplicate node id421

values, and optionally verify shape compatibility along edges when a canonical chain422

metadata flag is set.423

2. Bind. Instantiate each primitive with its parameter dictionary θi.424

3. Plan forward. The topological sort yields a sequential execution plan (vπ(1), . . . , vπ(|V|)).425

4. Plan adjoint. For graphs where all linear = True, the adjoint plan reverses the426

topological order and applies each node’s individual adjoint in sequence, implementing427

the chain rule A∗ = A∗
|V| ◦ · · · ◦ A∗

1 for a composition A = A|V| ◦ · · · ◦ A1. For428

graphs containing nonlinear nodes, the adjoint plan is not generated, and any call to429

adjoint() raises NotImplementedError at runtime.430

The compiled GraphOperator is serializable to JSON and hashable via SHA-256 for prove-431

nance tracking in RunBundle manifests.432

Template library. The graph templates.yaml registry contains 89 templates organized433

across 64 modalities, grouped by physical carrier:434

� Photons (optical): CASSI, SPC, CACTI, structured illumination microscopy (SIM),435

confocal, light-sheet, holography, ptychography, Fourier ptychographic microscopy436

(FPM), optical coherence tomography (OCT), lensless imaging, light field, integral437

imaging, neural radiance fields (NeRF), Gaussian splatting, fluorescence lifetime imag-438

ing (FLIM), diffuse optical tomography (DOT), and phase retrieval.439

� Electrons: Electron diffraction, electron backscatter diffraction (EBSD), electron440

energy loss spectroscopy (EELS), and electron holography.441

� Spins (MRI): Functional MRI (fMRI), diffusion-weighted MRI (DW-MRI), and442

magnetic resonance spectroscopy (MRS).443

� Acoustic: Ultrasound B-mode, Doppler ultrasound, shear-wave elastography, sonar,444

and photoacoustic tomography (combines optical excitation with acoustic detection).445

� Particles: X-ray computed tomography (CT), cone-beam CT (CBCT), neutron to-446

mography, proton radiography, and muon tomography.447

13



Physics Fidelity Ladder. Each template is parameterized by a fidelity tier that controls448

the degree of physical realism in the simulated forward model:449

Tier 1 (Linear, shift-invariant): The forward model is a linear, spatially uniform operator—450

the simplest approximation, suitable for initial diagnostics and rapid prototyping.451

Tier 2 (Linear, shift-variant): Spatially varying operator parameters (e.g. non-uniform452

illumination, position-dependent PSF, multi-coil sensitivity maps in MRI). Adds a453

modality-appropriate noise model (Poisson shot noise plus Gaussian read noise for454

photon-counting modalities, Rician noise for MRI, Poisson for CT).455

Tier 3 (Nonlinear, ray/wave-based): Includes nonlinear effects such as wavefront cur-456

vature, diffraction, and scattering. Perturbation families and ranges are specified in457

mismatch db.yaml.458

Tier 4 (Full-wave / Monte Carlo): Complete physical simulation including wave-optical459

propagation, spatially varying aberrations, detector nonlinearities, and environmen-460

tal drift. Currently implemented for holography and ptychography; other modalities461

degrade gracefully to Tier 3.462

Triad Law Formalization463

The Triad Law asserts that the quality of any computational imaging reconstruction is464

bounded by three fundamental gates. Rather than a qualitative guideline, PWM quantifies465

each gate numerically and uses the resulting scores to diagnose the dominant bottleneck in466

any imaging configuration.467

Gate 1 (Recoverability). Recoverability measures the information-theoretic capacity468

of the sensing geometry. We quantify it via the effective compression ratio r = m/n, where469

m is the number of independent measurements and n the dimension of the signal. The470

compression db.yaml registry (1,186 lines) stores, for each modality, a lookup table map-471

ping compression ratio to expected reconstruction PSNR under ideal conditions, obtained472

from calibration experiments or published benchmarks. Each entry carries a provenance473

field citing the source (paper DOI, internal experiment ID, or theoretical formula). Addi-474

tional recoverability indicators include the effective rank of the measurement matrix (esti-475

mated via randomized SVD for large operators), the dimension of the null space, and the476

restricted isometry property (RIP) constant where analytically tractable (e.g., for Gaussian477

random projections in SPC).478

Gate 2 (Carrier Budget). The carrier budget quantifies the signal-to-noise ratio (SNR)479

of the measurement channel. The PhotonAgent consumes the photon db.yaml registry480

(624 lines) which stores, per modality, a deterministic photon model parameterized by481
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source power, quantum efficiency, exposure time, and detector characteristics. The agent482

classifies the noise regime into one of three categories: shot-limited (Poisson-dominated,483

SNR ∝
√
Nphoton), read-limited (Gaussian read noise dominates, SNR ∝ Nphoton/σread),484

and dark-current-limited (long exposures where dark current accumulation dominates). The485

output is a PhotonReport containing the estimated SNR in decibels, the noise regime486

classification, per-element photon count, and a feasibility verdict (sufficient, marginal,487

or insufficient).488

Gate 3 (Operator Mismatch). Operator mismatch quantifies the discrepancy between489

the assumed forward modelHnom and the true physical operatorHtrue. The MismatchAgent490

consults mismatch db.yaml (797 lines) which catalogs, for each modality, the set of mis-491

match parameters (spatial shifts, rotational offsets, dispersion errors, PSF deviations, coil492

sensitivity errors, center-of-rotation offsets, etc.), their typical ranges, and available cor-493

rection methods. The mismatch severity score s ∈ [0, 1] is computed as the normalized ℓ2494

distance ∥θtrue−θnom∥/∥θrange∥, where θrange is the per-parameter dynamic range from the495

registry. Sensitivity analysis ∂PSNR/∂θk is estimated via finite differences on the forward496

model. The output is a MismatchReport containing the severity score, the dominant mis-497

match parameter, the recommended correction method, and the expected PSNR gain from498

correction.499

Gate binding determination. Given reconstruction results under the four-scenario pro-500

tocol (the Evaluation Protocol section below), PWM identifies the dominant gate by com-501

paring three cost terms:502

Cmismatch = PSNRI − PSNRII (2)

Cnoise = PSNRideal − PSNRnoisy (3)

Crecover = PSNRlimit − PSNRI (4)

where PSNRI is the reconstruction PSNR under Scenario I (ideal operator), PSNRII under503

Scenario II (mismatched operator), PSNRnoisy under the corresponding noisy condition,504

and PSNRlimit is the theoretical upper bound from the compression table. The dominant505

gate is argmaxg Cg.506

TriadReport schema. The analysis output is a Pydantic-validated TriadReport com-507

prising: dominant gate (enum: recoverability, carrier budget, operator mismatch),508

evidence scores (three floats, one per gate), confidence interval (float, 95% CI width509

from bootstrap), recommended action (string, e.g. “increase compression ratio” or “apply510

mismatch correction”), and parameter sensitivities (dictionary mapping each mismatch511

parameter name to its ∂PSNR/∂θk value).512
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Recovery ratio. We define the recovery ratio513

ρ =
PSNRIII − PSNRII

PSNRI − PSNRII
(5)

which lies in [0, 1] under standard convexity conditions (see Supplementary Note 1 for514

formal analysis; values ρ > 1 are possible when the corrected operator provides beneficial515

regularization). ρ = 0 indicates that calibration yields no benefit (mismatch is not the516

bottleneck), while ρ = 1 indicates that calibration fully closes the mismatch gap.517

Agent System Architecture518

The PWM agent system comprises 6 specialist agents, 1 optional hybrid agent, and 8519

support classes totalling 10,545 lines of Python. All agents execute deterministically; no520

large language model (LLM) is required for pipeline operation.521

PlanAgent. The orchestrator agent. Given a user prompt or a structured ExperimentSpec,522

PlanAgent parses the intent (simulate, operator correction, or auto), maps the re-523

quested modality to its canonical key via the modalities.yaml registry (which contains 64524

modality entries with keywords, forward model equations, and default solvers), builds an525

ImagingSystem contract, and dispatches to the appropriate sub-agents. When the mode is526

auto, PlanAgent inspects the available data and operator specification to determine whether527

simulation or operator correction is more appropriate.528

PhotonAgent. Computes SNR feasibility deterministically from the photon db.yaml529

registry. For each modality and photon-level tier (bright, standard, low light), the agent530

evaluates the photon budget by combining source power, quantum efficiency, exposure time,531

and noise model parameters. The output PhotonReport is a strict Pydantic model contain-532

ing noise regime (enum), snr db (float), feasibility (enum), and per element photons533

(float).534

RecoverabilityAgent. A table-driven agent that consults compression db.yaml (1,186535

lines) to map the modality and compression ratio to an expected PSNR range. Each table536

entry includes provenance metadata citing the original source. The output RecoverabilityReport537

contains compression ratio, psnr prediction, feasibility, and null space dim where538

available.539

MismatchAgent. Scores the mismatch severity for a given imaging configuration us-540

ing mismatch db.yaml (797 lines). For each modality, the database enumerates the rel-541

evant mismatch parameters, their physical units, typical perturbation ranges, and avail-542

able correction algorithms. The output MismatchReport includes severity (float, 0–1),543

correction method (string), expected gain db (float), and dominant parameter (string).544
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AnalysisAgent. The bottleneck classifier. It receives reports from the Photon, Recover-545

ability, and Mismatch agents, computes the gate costs (Equations (2) to (4)), identifies the546

dominant gate, and generates actionable suggestions. The AnalysisAgent also computes547

the recovery ratio ρ and its bootstrap confidence interval.548

AgentNegotiator. Implements a cross-agent veto protocol. Before reconstruction is au-549

thorized, the negotiator inspects all three upstream reports and applies three veto con-550

ditions: (1) low photon budget combined with aggressive compression (Cnoise and Crecover551

both large); (2) severe mismatch (severity > 0.7) without a planned correction step; (3) joint552

probability below the floor threshold (pjoint < 0.15), indicating that all three subsystems553

are simultaneously marginal. When any veto fires, reconstruction halts with an actionable554

explanation and suggested remediation.555

HybridAgent. An optional wrapper that invokes an LLM for natural-language narra-556

tive generation or edge-case modality mapping. All quantitative decisions remain on the557

deterministic code path; the HybridAgent is never required for pipeline operation.558

Support classes. The remaining components include: AssetManager (file I/O and caching559

for large arrays), ContinuityChecker (verifies that sequential pipeline outputs are dimen-560

sionally consistent), SystemDiscern (auto-detects modality from uploaded data), PreflightChecker561

(validates the complete experiment configuration before execution), WhatIfPrecomputer562

(evaluates counterfactual what-if scenarios), SelfImprovement (logs diagnostic events for563

future registry refinement), PhysicsStageVisualizer (generates intermediate visualiza-564

tions at each pipeline stage), and UPWMI (Universal Physics World Model Interface, the565

top-level entry point that wires all agents together).566

Contract system. Inter-agent communication uses 25 Pydantic v2 contract models. All567

contracts inherit from StrictBaseModel, which enforces extra="forbid" (no unexpected568

fields), validate assignment=True (mutations re-validated), and a model validator that569

rejects NaN and Inf in any float field. Bounded scores use Field(ge=0.0, le=1.0). Enums570

are string enums for human-readable JSON serialization. This design ensures that pipeline571

failures surface immediately as validation errors rather than propagating silently.572

YAML registries. The system is driven by 9 YAML registries totalling 7,034 lines:573

modalities.yaml (modality definitions), graph templates.yaml (OperatorGraph skele-574

tons), photon db.yaml (photon models), mismatch db.yaml (mismatch parameters and575

correction methods), compression db.yaml (recoverability tables with provenance), solver registry.yaml576

(solver configurations), primitives.yaml (primitive operator metadata), dataset registry.yaml577

(dataset locations and formats), and acceptance thresholds.yaml (pass/fail thresholds578

per metric).579
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Correction Algorithms580

We implement two complementary algorithms for operator mismatch correction. Crucially,581

both algorithms operate on the forward operator parameters θ rather than the reconstruc-582

tion solver weights, making them solver-agnostic: the corrected operator H(θ̂) benefits any583

downstream solver (GAP-TV, MST-L, HDNet18, CST, etc.) without retraining.584

Algorithm 1: Hierarchical Beam Search. The coarse correction phase employs a585

hierarchical search strategy to rapidly explore the mismatch parameter space. For CASSI,586

the five-parameter mismatch model comprises mask affine parameters (spatial shifts dx, dy587

and rotation θ) and dispersion parameters (slope a1 and axis angle α); an optional sixth588

parameter, PSF width σpsf, is available but not used in the primary experiments. The589

algorithm proceeds as follows:590

1. 1D sweeps. Each parameter is swept independently over its full range while holding591

others at nominal values. This produces five 1D cost curves from which coarse optima592

are extracted.593

2. 3D beam search. The mask affine subspace (dx, dy, θ) is searched over a 5× 5× 5594

grid centered on the 1D optima. The top-k (k = 5) candidates by reconstruction595

PSNR are retained.596

3. 2D beam search. For each retained mask candidate, the dispersion subspace (a1, α)597

is searched over a 5× 7 grid. The joint top-k candidates are retained.598

4. Coordinate descent refinement. Three rounds of univariate refinement on each599

parameter, shrinking the search interval by factor 2 at each round, produce the final600

estimate θ̂Alg1.601

Total runtime is approximately 300 seconds per scene on a single GPU. Accuracy is602

±0.1–0.2 pixels for spatial parameters and ±0.05◦ for angular parameters.603

Algorithm 2: Joint Gradient Refinement. The fine correction phase uses a differen-604

tiable forward model to jointly optimize all mismatch parameters via gradient descent. The605

key components are:606

1. Differentiable mask warp. The binary mask is warped by a continuous affine607

transformation using bilinear interpolation, implemented as a custom PyTorch module608

(DifferentiableMaskWarpFixed). The mask values are passed through a straight-609

through estimator (STE) to maintain binary structure while permitting gradient flow.610

2. Differentiable forward model. The CASSI forward model y = CASSI(x; θ) is611

implemented as a differentiable PyTorch module (DifferentiableCassiForwardSTE)612

that accepts mismatch parameters as differentiable inputs.613
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3. GPU grid initialization. A full-range 3D grid search over (dx, dy, θ) with 9×9×7 =614

567 points provides diverse starting candidates. The top 9 candidates seed multi-start615

gradient refinement.616

4. Staged gradient refinement. Each of the 9 candidates is refined using Adam617

optimization (learning rate 10−2, decaying to 10−3) for 200 steps. For each candidate,618

4 random restarts with jittered initialization guard against local minima. The loss619

function is the negative PSNR computed via an unrolled K-iteration differentiable620

GAP-TV solver (DifferentiableGAPTV, K = 10 unrolled iterations).621

Total runtime for Algorithm 2 is approximately 3,200 seconds (200 steps × 4 restarts ×622

9 candidates with early stopping). Accuracy improves to ±0.05–0.1 pixels, a 3–5× improve-623

ment over Algorithm 1. The two algorithms are used sequentially in practice: Algorithm 1624

provides a warm start, and Algorithm 2 refines to sub-pixel precision.625

Evaluation Protocol626

Four-Scenario Protocol. We evaluate every modality under four standardized scenarios627

that isolate different sources of quality degradation:628

Scenario I (Ideal): yobs = Htrue xgt; reconstruct with Htrue. This yields the oracle upper629

bound on reconstruction quality, limited only by the sensing geometry and solver630

convergence.631

Scenario II (Mismatch): yobs = Htrue xgt; reconstruct with Hnom (Hnom ̸= Htrue). This632

is the standard operating condition in practice: the measurement is generated by the633

true physics, but the reconstruction uses a nominal (potentially mismatched) forward634

model.635

Scenario III (Corrected): yobs = Htrue xgt; reconstruct with Ĥ = H(θ̂) where θ̂ is636

estimated by Algorithms 1 and 2. This quantifies the benefit of mismatch calibration.637

Scenario IV (Oracle Mask): yobs = Htrue xgt; reconstruct with Htrue. Provides the cor-638

rection ceiling: the best reconstruction achievable when the true operator is known639

exactly, applied to data generated under mismatch conditions. The gap between640

Scenario IV and Scenario I reveals the irreducible loss from mismatch-induced mea-641

surement degradation.642

Metrics. Reconstruction quality is assessed using three complementary metrics:643

� PSNR (peak signal-to-noise ratio, in dB): the primary metric, computed per scene644

and averaged. For signals normalized to [0, 1], PSNR = 10 log10(1/MSE). For SPC645

data normalized to [0, 255], the peak value is 255.646
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� SSIM (structural similarity index): captures perceptual quality including luminance,647

contrast, and structural components, computed with a Gaussian window of width 11648

and standard deviation 1.5.649

� SAM (spectral angle mapper): for hyperspectral modalities (CASSI), measures the650

angle between predicted and true spectral vectors at each spatial location, reported651

in degrees. Lower is better.652

Datasets.653

� CASSI: 10 scenes from the KAIST dataset6, each a 256× 256× 28 spectral cube (28654

spectral bands from 450 nm to 650 nm). Data range [0, 1].655

� CACTI: 6 benchmark videos, each 256 × 256 × 8 (8 temporal frames encoded per656

snapshot). Data range [0, 1].657

� SPC: 11 natural images from the Set11 benchmark, each 256× 256 grayscale. Data658

range [0, 255].659

All per-scene metrics are reported individually as well as averaged, and all reconstruction660

arrays are saved as NumPy NPZ files.661

Experimental Details662

Hardware. All experiments are conducted on a single NVIDIA GPU. Algorithm 1 (beam663

search) and all solver-based reconstructions use the GPU for matrix–vector products and664

FFT operations. Algorithm 2 (gradient refinement) additionally uses PyTorch automatic665

differentiation on the same GPU.666

CASSI configuration. The coded aperture snapshot spectral imaging (CASSI) system667

uses a TSA-Net binary mask of dimensions 256×256, with 28 spectral bands dispersed along668

the spatial dimension. The five-parameter mismatch model ψ = (dx, dy, θ, a1, α) describes:669

mask spatial shift in x (dx, pixels), mask spatial shift in y (dy, pixels), mask rotation angle670

(θ, degrees), dispersion slope (a1, pixels per band), and dispersion axis angle (α, degrees).671

An optional sixth parameter, PSF blur width (σpsf, pixels), is available but not used in the672

primary experiments. For the primary mismatch experiment (validated by InverseNet), the673

true mismatch parameters are ψtrue = (dx = 0.5 px, dy = 0.3 px, θ = 0.1◦, a1 = 2.02, α =674

0.15◦). Solvers evaluated include TwIST22, GAP-TV17, DGSMP23, MST-L5, and CST-675

L24, all of which receive the same operator and differ only in their reconstruction algorithm.676

The supplementary per-scene analysis additionally includes DeSCI25 and HDNet18.677
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CACTI configuration. The coded aperture compressive temporal imaging system uses678

binary temporal masks of dimensions 256 × 256, encoding 8 video frames into a single679

snapshot measurement. Mismatch is parameterized as a temporal mask timing offset (sub-680

frame shift). The default solver is GAP-TV with total-variation regularization.681

SPC configuration. The single-pixel camera uses random binary measurement patterns682

at three compression ratios: 10%, 25%, and 50% (r = m/n ∈ {0.10, 0.25, 0.50}). Mismatch683

is modeled as a multiplicative gain bias on the measurement matrix. The default solver is684

ADMM-TV with total-variation regularization and a wavelet sparsifying transform.685

MRI configuration. Cartesian k-space sampling with 4× acceleration (25% of k-space686

lines acquired). Mismatch is parameterized as a 5% multiplicative error in the coil sensitivity687

maps used for parallel imaging reconstruction. The default solver is SENSE with ℓ1-wavelet688

regularization.689

CT configuration. Fan-beam geometry with 180 projections over 180◦. Mismatch is690

modeled as a center-of-rotation (CoR) offset, which produces characteristic arc artifacts in691

the reconstruction. The default solver is filtered back-projection (FBP) with a Ram-Lak692

filter, supplemented by iterative SART for comparison.693

Statistical Analysis694

Per-scene reporting. All metrics are reported per scene, not merely as dataset averages.695

This enables identification of scene-dependent failure modes (e.g., spectrally flat scenes that696

are inherently harder for CASSI, or textureless regions that challenge SPC).697

Summary statistics. For each modality and scenario, we report the mean ± standard698

deviation of PSNR, SSIM, and SAM across all scenes. For CASSI (10 scenes), we addition-699

ally report the per-band PSNR to assess spectral uniformity of reconstruction quality.700

Recovery ratio confidence intervals. The recovery ratio ρ (Equation (5)) is a ratio of701

differences and therefore sensitive to noise in the constituent PSNR values. We compute702

95% confidence intervals via the bootstrap percentile method with B = 1,000 resamples. At703

each bootstrap iteration, we resample the scene set with replacement, recompute the mean704

PSNR for each scenario, and derive ρ. The 2.5th and 97.5th percentiles of the bootstrap705

distribution define the 95% CI.706
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Parameter recovery accuracy. For mismatch correction experiments, we report the707

root-mean-square error (RMSE) between the estimated and true mismatch parameters:708

RMSEk =

√√√√ 1

Nscene

Nscene∑
i=1

(θ̂k,i − θk,true)2 (6)

where k indexes the mismatch parameter, i indexes the scene, and Nscene is the number of709

test scenes. Uncertainty in the RMSE is estimated via bootstrap (B = 1,000).710

Ablation significance. Ablation studies (removal of PhotonAgent, RecoverabilityAgent,711

MismatchAgent, or RunBundle discipline) are evaluated by comparing the full-pipeline712

PSNR against each ablated variant. We report the PSNR difference ∆PSNR per modality713

and verify that each component contributes ≥ 0.5 dB across all depth modalities, establish-714

ing practical significance.715

Code and Data Availability716

Source code. The complete PWM framework, including all agents, the OperatorGraph717

compiler, correction algorithms, YAML registries, and evaluation scripts, is released as718

open-source software under the MIT license at https://github.com/integritynoble/719

Physics_World_Model. The codebase is organized into two Python packages: pwm core720

(core framework, agents, graph compiler, calibration algorithms) and pwm AI Scientist721

(automated experiment generation and analysis).722

Reconstruction data. All reconstruction arrays from every experiment—Scenarios I723

through IV for each modality and solver—are released as NumPy NPZ files. Files are724

stored using Git LFS and require allow pickle=True for loading. Data ranges are stan-725

dardized: CASSI and CACTI reconstructions are normalized to [0, 1]; SPC reconstructions726

are in [0, 255].727

Experiment manifests. Every experiment is recorded in a RunBundle v0.3.0 manifest728

containing: the git commit hash at execution time, all random number generator seeds,729

platform information (Python version, GPU model, CUDA version), SHA-256 hashes of all730

input data and output artifacts, metric values, and wall-clock timestamps. These manifests731

enable exact reproduction of every reported result.732

Registry data. All 9 YAML registries (7,034 lines total) that drive the agent system—733

including modality definitions, graph templates, photon models, mismatch databases, com-734

pression tables, solver configurations, primitive specifications, dataset paths, and acceptance735

thresholds—are publicly available in the repository under packages/pwm core/contrib/.736
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The ExperimentSpec JSON schemas used for pipeline input validation are included along-737

side worked examples in examples/.738
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Figure 1 | PWM overview. The Physics World Models pipeline. a, A computational802

imaging system is compiled into an OperatorGraph DAG. b, The Triad Law diagnos-803

tic agents evaluate each gate. c, The dominant gate is identified and a TriadReport is804

produced. d, If Gate 3 dominates, autonomous correction refines the forward model param-805

eters. e, The original solver is re-run with the corrected operator, recovering reconstruction806

quality without retraining.807

Figure 2 | OperatorGraph IR and Physics Fidelity Ladder. a, Example Opera-808

torGraph DAGs for three modalities: CASSI (photon), MRI (spin), and CT (particle).809

Each node wraps a primitive operator; edges define data flow. b, The Physics Fidelity810

Ladder. Tier 1: linear shift-invariant. Tier 2: linear shift-variant. Tier 3: nonlinear811

ray/wave-based. Tier 4: full-wave/Monte Carlo. c, Summary statistics: 89 templates, 64812

modalities, 5 carrier families.813

Figure 3 | Triad Law structure and gate binding. a, Decision tree for the Triad814

Law: each imaging failure is routed through Gate 1, Gate 2, and Gate 3 to produce a815

TriadReport. b, Gate binding heatmap across 9 correction configurations (7 distinct816

modalities). Red indicates Gate 3 dominance (all modalities), blue indicates Gate 1, and817

amber indicates Gate 2. c, Recovery ratio ρ distribution across all 9 correction configura-818

tions.819

Figure 4 | 16-modality correction results. Bar chart showing correction gain ∆corr820

(dB) for each of the 9 correction configurations (7 distinct modalities), grouped by carrier821

family. Photon modalities (CASSI, CACTI, SPC, Lensless, Ptychography) in blue; spin822

(MRI) in purple; X-ray (CT) in red; generic (Matrix) in grey.823

Figure 5 | CASSI and CACTI deep dive. a, CASSI: PSNR across 4 scenarios for824

GAP-TV, MST-L, and HDNet under combined mask-geometry-plus-dispersion mismatch.825

The uniform collapse under Scenario II (range 20.83–21.88 dB) confirms operator-driven826

failure; oracle recovery varies by solver (ρ = 0.22–0.46). b, CACTI: EfficientSCI across 4827

scenarios, showing 20.85 dB mismatch degradation and ρ > 1.0 (full recovery with regu-828

larization benefit). c, Example reconstructed spectral datacubes: Ideal, Mismatched, and829

Corrected.830

Figure 6 | Zero-shot generalization across carrier families. Correction gain (dB)831

when beam-search and gradient-refinement hyperparameters are tuned on photon-domain832

modalities and transferred without modification to electron, spin, acoustic, and particle do-833

mains. Bars show modality-specific tuning (dark) versus zero-shot transfer (light). Transfer834

efficiency is high across all carrier families, confirming the carrier-agnostic nature of the pwm835

correction pipeline.836
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