

1 Physics World Models for Computational Imaging:
2 A Universal Physics-Information Law for Recoverability,
3 Carrier Noise, and Operator Mismatch

4 Chengshuai Yang
5 NextGen PlatformAI C Corp
6 integrityyang@gmail.com

7 February 2026

8 **Abstract**

9 Computational imaging systems routinely fail in practice because the assumed for-
10 ward model diverges from the true physics, yet no existing framework systematically
11 diagnoses *why* reconstruction degrades. We introduce Physics World Models (PWM),
12 a universal diagnostic and correction framework grounded in the TRIAD LAW: every
13 imaging failure decomposes into exactly three root causes—recoverability loss (**Gate 1**),
14 carrier-noise budget violation (**Gate 2**), and operator mismatch (**Gate 3**). PWM com-
15 piles 64 modalities spanning five physical carriers (photons, electrons, spins, acoustic
16 waves, and particles) into a unified OPERATORGRAPH intermediate representation com-
17 prising 89 validated operator templates. Autonomous, deterministic agents diagnose
18 the dominant failure gate and correct the forward model without retraining any recon-
19 struction algorithm. Across 7 distinct modalities (9 correction configurations, including
20 two CASSI algorithms and the Matrix baseline; 16 registered), correction yields im-
21 provements ranging from +0.54 dB to +48.25 dB. **Gate 3** is identified as the dominant
22 bottleneck in every validated modality, demonstrating that a decade of solver-centric
progress has overlooked the principal source of imaging failure. The TRIAD LAW pro-
vides the first universal, quantitative language for imaging diagnosis.

23 **Introduction**

24 Why do state-of-the-art reconstruction algorithms fail in practice? The answer is decep-
25 tively simple: the assumed forward model is wrong, and nobody measures this systemati-
26 cally. The computational imaging community has devoted extraordinary effort to designing
27 ever more powerful solvers—from compressed sensing^{1,2} and plug-and-play priors³ to end-
28 to-end deep unrolling networks⁴—while treating the forward model as a fixed, trusted input.
29 This implicit assumption is rarely justified. Optical masks shift during assembly, MRI coil
30 sensitivities drift with patient positioning, and CT geometries deviate from their nominal

31 calibration. When these mismatches arise, even the most sophisticated reconstruction algo-
32 rithms collapse, and the resulting artifacts are routinely misattributed to solver limitations
33 rather than to their true cause: an incorrect physics model.

34 The scale of this crisis is striking. Consider coded aperture snapshot spectral imag-
35 ing (CASSI), a representative photon-domain modality. Under ideal conditions—where the
36 true coded mask is known exactly—the state-of-the-art transformer solver MST-L⁵ achieves
37 34.81 dB on a standard benchmark⁶. Introduce a realistic 5-parameter perturbation—
38 sub-pixel mask shift, rotation, and multi-parameter dispersion drift (see Methods for full
39 specification)—and MST-L drops to 20.83 dB, a catastrophic loss of 13.98 dB. To put this in
40 perspective, the cumulative improvement from a decade of solver development in CASSI—
41 progressing from early iterative methods through deep unrolling to modern transformer
42 architectures—amounts to roughly 7 dB (from iterative TwIST at \sim 27.8 dB to transformer
43 MST-L at 34.81 dB). A sub-pixel mask perturbation erases roughly twice the gains of an
44 entire research generation. This is not a pathological edge case; analogous degradations ap-
45 pear across modalities, from lensless imaging to magnetic resonance imaging^{7,8} to computed
46 tomography⁹.

47 The root problem is a missing diagnostic layer. When a reconstruction fails, the prac-
48 titioner faces a differential diagnosis with at least three distinct failure modes. First, the
49 measurement may be fundamentally information-deficient: the null space of the forward
50 operator may preclude recovery regardless of the solver or signal-to-noise ratio. Second,
51 the carrier budget may be insufficient: too few photons, too low a dose, or too short an
52 acquisition may push the measurement below the quantum or thermal noise floor. Third,
53 the assumed forward model may diverge from the true physics: the operator used for recon-
54 struction may not match the operator that generated the data. These three failure modes
55 interact, compound, and masquerade as one another, yet no existing framework disentangles
56 them.

57 Previous work has addressed fragments of this problem. Calibration methods exist for
58 specific instruments^{10,11}, but they are modality-specific and do not generalize. Uncertainty
59 quantification techniques can flag unreliable reconstructions, but they do not diagnose the
60 *cause* of the unreliability. Robustness studies perturb individual systems¹², but they lack a
61 unifying formalism that connects perturbation types across the electromagnetic, acoustic,
62 and particle-physics domains. The imaging community thus remains in a pre-diagnostic
63 era: systems are built, they fail, and the failure is addressed *ad hoc* if it is addressed at all.

64 This paper introduces Physics World Models (PWM), a universal framework that ele-
65 vates imaging diagnosis to a first-class computational task alongside reconstruction. The
66 theoretical backbone of PWM is the TRIAD LAW, which asserts that every imaging failure
67 decomposes into exactly three root causes, termed gates: **Gate 1** (recoverability), **Gate 2**
68 (carrier budget), and **Gate 3** (operator mismatch). The TRIAD LAW is not a heuristic; it is
69 a structured decomposition grounded in the information-theoretic and physical constraints

70 that govern all linear inverse problems. For every modality and every reconstruction failure,
71 PWM produces a **TRIADREPORT**: a mandatory diagnostic artifact that identifies the
72 dominant gate, quantifies the evidence, and prescribes a corrective action.

73 To apply the **TRIAD LAW** across the full landscape of computational imaging, PWM in-
74 troduces the **OPERATORGRAPH** intermediate representation (IR): a directed acyclic graph
75 (DAG) formalism that compiles forward models from 64 modalities spanning five physical
76 carriers—photons, electrons, spins, acoustic waves, and particles—into a common computa-
77 tional substrate. Each node in the graph wraps a primitive physical operator (convolution,
78 mask modulation, spectral dispersion, Radon projection, Fourier encoding, and others),
79 and edges define the data flow from source to sensor. The **OPERATORGRAPH** IR currently
80 comprises 89 validated templates, enabling PWM to reason about imaging systems as diverse
81 as coded aperture spectral imaging¹³, ptychography¹⁴, accelerated MRI¹⁵, photoacoustic
82 tomography, and neutron computed tomography within a single formalism.

83 Diagnosis alone is insufficient; PWM also performs autonomous correction. Three di-
84 agnostic agents (part of a 7-agent system described in Methods)—**RecoverabilityAgent**,
85 **PhotonAgent**, and **MismatchAgent**—evaluate each gate without requiring any large lan-
86 guage model or learned component. When **Gate 3** is identified as dominant, a two-stage
87 correction pipeline consisting of beam search followed by gradient refinement recovers the
88 true forward model parameters. Critically, correction operates entirely on the forward model
89 and does not retrain or fine-tune the downstream solver. Across 7 distinct modalities (9
90 correction configurations, including two CASSI algorithms and the Matrix baseline; with
91 7 additional configurations registered for future validation), autonomous correction yields
92 improvements ranging from +0.54 dB to +48.25 dB. In every validated modality, **Gate 3**
93 is identified as the dominant failure gate, confirming that operator mismatch—not solver
94 weakness or noise—is the principal bottleneck in modern computational imaging.

95 The Triad Law

96 The **TRIAD LAW** asserts that every failure in computational image recovery can be at-
97 tributed to one or more of exactly three root causes, which we term *gates*. The three gates
98 are mutually exclusive in their physical origin yet may co-occur and interact in any given
99 measurement scenario.

100 **Gate 1: Recoverability.** **Gate 1** asks whether the measurement encodes sufficient infor-
101 mation about the signal of interest. Formally, if the forward operator $H \in \mathbb{R}^{m \times n}$ maps the
102 unknown signal $\mathbf{x} \in \mathbb{R}^n$ to the measurement $\mathbf{y} = H\mathbf{x} + \mathbf{n}$, then the null space $\mathcal{N}(H)$ defines
103 the set of signal components that are fundamentally invisible to the sensor. When $\mathcal{N}(H)$ is
104 large—as occurs when the compression ratio is extreme, the field of view is truncated, or the
105 sampling pattern is degenerate—no solver can recover the missing information, regardless

106 of its sophistication. **Gate 1** failures are intrinsic to the measurement design and can only
107 be remedied by acquiring additional data or redesigning the sensing configuration.

108 **Gate 2: Carrier Budget.** **Gate 2** asks whether the signal-to-noise ratio (SNR) is suffi-
109 cient for the target reconstruction quality. Every physical carrier—photons, electrons, spins,
110 acoustic waves, particles—is subject to fundamental noise limits: shot noise for photon-
111 counting systems, thermal noise in electronic detectors, T_1/T_2 relaxation noise in magnetic
112 resonance. When the carrier budget is too low, the measurement is dominated by noise
113 and the reconstruction degrades regardless of operator fidelity. **Gate 2** failures manifest as
114 spatially uniform quality loss and can be diagnosed by comparing reconstruction quality at
115 the actual dose to quality at a reference (high-SNR) dose.

116 **Gate 3: Operator Mismatch.** **Gate 3** asks whether the forward model assumed by
117 the reconstruction algorithm matches the true physics that generated the data. Formally,
118 the solver operates with a nominal operator H_{nom} , but the data were generated by a true
119 operator H_{true} . When $H_{\text{nom}} \neq H_{\text{true}}$, the reconstruction targets a phantom inverse problem
120 whose solution bears little relation to the true signal. **Gate 3** failures are insidious because
121 they produce structured artifacts that mimic signal content, leading practitioners to blame
122 the solver rather than the model. Sources of mismatch include geometric misalignment
123 (mask shift, rotation, magnification error), parameter drift (coil sensitivity variation, gain
124 instability), and model simplification (ignoring diffraction, neglecting scattering, linearizing
125 a nonlinear process).

126 **Mathematical formulation.** To quantify the relative contribution of each gate, PWM
127 defines a four-scenario evaluation protocol. Let PSNR_I denote reconstruction quality under
128 ideal conditions (true operator, high SNR), PSNR_{II} under mismatch conditions (nominal
129 operator applied to data generated by the true operator), and PSNR_{III} under correction
130 (forward model corrected). The recovery ratio $\rho = (\text{PSNR}_{\text{III}} - \text{PSNR}_{\text{II}}) / (\text{PSNR}_I - \text{PSNR}_{\text{II}})$
131 quantifies how much of the mismatch-induced degradation is recovered by correction (see
132 Methods, Equation (5)). A value of $\rho = 1$ indicates that the full degradation is attributable
133 to **Gate 3** and is completely recoverable, while $\rho = 0$ indicates that the degradation persists
134 even with a perfect operator, implicating **Gate 1** or **Gate 2**.

135 **TriadReport.** For every diagnosis, PWM produces a **TRIADREPORT**: a structured ar-
136 tifact containing the dominant gate identifier, per-gate evidence scores, a confidence in-
137 terval on the recovery ratio, and a recommended corrective action. The **TRIADREPORT**
138 is mandatory—PWM does not permit a reconstruction to be reported without an accom-
139 panying diagnosis. This design choice enforces diagnostic accountability across the entire
140 pipeline.

141 **Key finding: Gate 3 dominates.** Across the 9 correction configurations (7 distinct
142 modalities) for which we have completed full validation, **Gate 3** is the dominant failure
143 gate in every case. In CASSI, a sub-pixel mask shift with rotation and dispersion drift
144 degrades MST-L from 34.81 dB to 20.83 dB—a loss of 13.98 dB that far exceeds the \sim 7 dB
145 improvement achievable by upgrading from an iterative solver to a state-of-the-art trans-
146 former. The pattern holds beyond photon-domain modalities. In accelerated MRI, a 5% coil
147 sensitivity mismatch produces degradation comparable to halving the acceleration factor.
148 In CT, a sub-degree geometric error creates ring artifacts that no post-processing can re-
149 move. The TRIAD LAW reveals that the imaging community has been optimizing the wrong
150 variable: solver improvements yield diminishing returns when the dominant bottleneck is
151 operator fidelity.

152 OperatorGraph IR

153 To apply the TRIAD LAW uniformly across the full landscape of computational imaging,
154 PWM requires a common representation for forward models that is both physically faithful
155 and computationally tractable. We introduce the OPERATORGRAPH intermediate repre-
156 sentation (IR), a directed acyclic graph (DAG) formalism in which each node wraps a single
157 primitive physical operator and edges define the data flow from source to detector.

158 **Primitive operators.** The OPERATORGRAPH IR defines a library of primitive operators,
159 each corresponding to a canonical physical transformation: spatial convolution (point spread
160 function, blur kernel), mask modulation (coded aperture, spatial light modulator pattern),
161 spectral dispersion (prism, grating), Fourier encoding (MRI k -space trajectory), Radon pro-
162 jection (X-ray, neutron line integral), wavefront propagation (Fresnel, angular spectrum),
163 coil sensitivity weighting (multi-channel MRI), and additive noise injection (Gaussian, Pois-
164 son, mixed). Every primitive implements both a `forward()` method and an `adjoint()`
165 method, with a validated adjoint consistency check ensuring $\langle H\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, H^\dagger \mathbf{y} \rangle$ to within
166 numerical precision.

167 **DAG construction.** A forward model is constructed by composing primitive opera-
168 tors into a DAG. For example, the CASSI¹³ forward model is represented as Source \rightarrow
169 MaskModulation \rightarrow SpectralDispersion \rightarrow SensorIntegration \rightarrow PoissonNoise. MRI⁷ be-
170 comes Source \rightarrow CoilSensitivity \rightarrow FourierEncoding \rightarrow Undersampling \rightarrow GaussianNoise.
171 CT¹⁶ is compiled as Source \rightarrow RadonProjection \rightarrow DetectorResponse \rightarrow PoissonNoise.
172 The DAG formalism naturally handles branching (multi-channel systems), merging (multi-
173 view fusion), and hierarchical composition (system-of-systems). Each edge carries tensor
174 shape and dtype metadata, enabling static validation before execution.

175 **Five physical carriers.** The OPERATORGRAPH IR is organized around five physical car-
176 rier families: *photons* (visible, infrared, X-ray, gamma), *electrons* (scanning, transmission,
177 diffraction), *spins* (nuclear magnetic resonance, electron spin resonance), *acoustic waves*
178 (ultrasound, photoacoustic), and *particles* (neutrons, protons, muons). Each carrier fam-
179 ily defines a canonical noise model and a set of physically meaningful perturbation axes.
180 The carrier abstraction ensures that the TRIAD LAW diagnostic agents operate identically
181 regardless of the underlying physics.

182 **Physics Fidelity Ladder.** Not all applications require the same level of physical fidelity.
183 The OPERATORGRAPH IR defines a four-tier Physics Fidelity Ladder: Tier 1 (linear, shift-
184 invariant approximation), Tier 2 (linear, shift-variant), Tier 3 (nonlinear, ray-based or
185 wave-based), and Tier 4 (full-wave simulation or Monte Carlo transport). Each tier inherits
186 the operator interface and adjoint contract from its parent, enabling solvers to operate
187 transparently across fidelity levels. For the 64 modalities compiled in this work, Tier 1 and
188 Tier 2 models suffice for diagnostic purposes; Tier 3 and Tier 4 are reserved for high-fidelity
189 correction refinement.

190 **Scale and validation.** The current OPERATORGRAPH library contains 89 validated tem-
191 plates spanning 64 distinct imaging modalities. Validation consists of three automated
192 checks: adjoint consistency (relative error $|\langle H\mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{x}, H^\dagger \mathbf{y} \rangle| / \max(|\langle H\mathbf{x}, \mathbf{y} \rangle|, \epsilon) < 10^{-6}$),
193 gradient flow (backpropagation through the full DAG), and dimensional consistency (static
194 shape inference matches runtime shapes). All 89 templates (composed of linear primitives
195 at Tier 1 and Tier 2) pass all three checks. The OPERATORGRAPH IR is implemented in
196 Python with a PyTorch backend, enabling seamless integration with existing deep-learning
197 reconstruction pipelines.

198 Autonomous Diagnosis and Correction

199 PWM performs diagnosis and correction through three specialized agents, each targeting one
200 gate of the TRIAD LAW. All agents are fully deterministic—they require no large language
201 model, no learned parameters, and no human intervention.

202 **RecoverabilityAgent (Gate 1).** The RecoverabilityAgent evaluates whether the mea-
203 surement configuration encodes sufficient information. It computes the effective compres-
204 sion ratio m/n (measurements over unknowns), estimates the null-space dimension via
205 randomised SVD, and checks for pathological sampling patterns (clustered k -space trajec-
206 tories, degenerate mask patterns). The output is a recoverability score $s_1 \in [0, 1]$, where
207 $s_1 < 0.3$ flags a **Gate 1**-dominated failure and triggers a recommendation to increase the
208 measurement budget.

209 **PhotonAgent (Gate 2).** The PhotonAgent evaluates carrier-budget sufficiency. For
210 photon-domain modalities, it estimates the per-pixel photon count from the measurement
211 statistics, computes the Cramér–Rao lower bound on reconstruction error, and compares
212 the achievable SNR to the target quality. For non-photon carriers, analogous estimators
213 are used: thermal noise variance for MRI, dose-dependent variance for CT, and bandwidth-
214 limited SNR for acoustic modalities. The output is a budget score $s_2 \in [0, 1]$, where $s_2 < 0.3$
215 indicates a **Gate 2**-dominated failure.

216 **MismatchAgent (Gate 3).** The MismatchAgent is the most consequential agent, re-
217 reflecting the empirical dominance of **Gate 3**. It operates in two phases. In the detection
218 phase, it compares the residual statistics $\|\mathbf{y} - H_{\text{nom}}\hat{\mathbf{x}}\|$ against the expected noise distribu-
219 tion: systematic residual structure indicates model mismatch. In the localization phase, it
220 identifies which operator node in the OPERATORGRAPH DAG is the source of the mismatch
221 by sweeping perturbations through each node independently and measuring the sensitivity
222 of the residual. The output is a mismatch score $s_3 \in [0, 1]$ and a pointer to the offending
223 node.

224 **Correction pipeline.** When **Gate 3** is identified as dominant, PWM activates a two-
225 stage correction pipeline. **Algorithm 1 (Beam Search)** performs a coarse grid search
226 over the declared mismatch parameter family $\psi = (\psi_1, \dots, \psi_k)$ associated with the offending
227 operator node. The parameter family is declared in the OPERATORGRAPH template (*e.g.*,
228 lateral shift dx , dy and rotation θ for a mask modulation node). Beam search evaluates
229 a discrete grid of candidate parameters, scores each candidate by the sharpness of the
230 reconstructed image (using a gradient-based focus metric), and retains the top- B candidates.
231 **Algorithm 2 (Gradient Refinement)** takes each beam candidate as an initialization and
232 performs continuous optimization of ψ via backpropagation through the OPERATORGRAPH
233 DAG. The loss function combines a data-fidelity term $\|\mathbf{y} - H(\psi)\hat{\mathbf{x}}\|^2$ with a regularizer that
234 penalizes deviation from the nominal parameters.

235 **No method retraining.** A critical design principle of PWM is that correction operates
236 exclusively on the forward model, not on the solver. Once the corrected operator $H(\hat{\psi})$ is
237 obtained, the original reconstruction algorithm is re-run with the updated forward model.
238 This means that any existing solver—iterative, plug-and-play, or deep unrolling—benefits
239 from PWM correction without modification. The separation of model correction from solver
240 execution ensures that PWM is solver-agnostic and future-proof.

241 **4-Scenario Protocol.** To rigorously evaluate correction quality, PWM defines four canon-
242 ical scenarios. **Scenario I (Ideal):** the solver reconstructs using the true operator H_{true}
243 with high SNR, establishing the performance ceiling. **Scenario II (Mismatch):** the solver

244 reconstructs using the nominal operator H_{nom} applied to data generated by H_{true} , quanti-
245 fying the mismatch penalty. **Scenario III** (Corrected): the solver reconstructs using the
246 PWM-corrected operator $H(\hat{\psi})$, measuring correction effectiveness. **Scenario IV** (Oracle
247 Mask): the true operator H_{true} is used for reconstruction on data generated by the mis-
248 matched system, providing the upper bound on what any correction algorithm can achieve
249 (the correction ceiling).

250 **Calibration accuracy.** In the CASSI modality, the InverseNet-validated mismatch uses
251 five parameters:

$$\psi^* = (dx=0.5 \text{ px}, dy=0.3 \text{ px}, \theta=0.1^\circ, a_1=2.02, \alpha=0.15^\circ).$$

252 Algorithm 2 recovers the mask geometry parameters to sub-pixel accuracy. Under this
253 multi-parameter mismatch, Scenario IV (Oracle Mask) correction recovers +0.76 dB for
254 GAP-TV and +6.50 dB for MST-L, with recovery ratios of $\rho = 0.22$ (GAP-TV) and $\rho = 0.46$
255 (MST-L). The moderate recovery ratios reflect the combined difficulty of simultaneously cor-
256 recting mask shift, rotation, dispersion slope, and dispersion angle—a substantially harder
257 calibration problem than the isolated lateral shift analyzed in prior work.

258 Results

259 We evaluate PWM across 7 distinct modalities (9 correction configurations, including two
260 CASSI algorithms and the Matrix baseline; 16 registered configurations total) and a broader
261 26-modality benchmark suite. All experiments use the 4-Scenario Protocol described above.
262 Reconstruction quality is primarily measured by peak signal-to-noise ratio (PSNR in dB);
263 SSIM and spectral angle mapper (SAM) values are recorded in the RunBundle manifests.

264 **16-modality correction results.** Supplementary Table S1 summarizes the correction
265 performance across 9 correction configurations spanning 7 distinct modalities (16 registered
266 configurations total) and multiple carrier families. The correction gain $\Delta_{\text{corr}} = \text{PSNR}_{\text{III}} -$
267 PSNR_{II} ranges from +0.54 dB (CASSI Alg 1) to +48.25 dB (accelerated MRI, where a coil
268 sensitivity mismatch is severe). The validated modalities span photon-domain systems—
269 CASSI (+0.76 dB oracle upper bound with GAP-TV; up to +6.50 dB with MST-L), CACTI
270 (+22.94 dB), SPC (+12.21 dB), Lensless (+3.55 dB)—as well as coherent-photon (Ptychog-
271 raphy: +7.09 dB), spin-domain (MRI: +48.25 dB), and X-ray (CT: +10.68 dB) modalities,
272 confirming that the TRIAD LAW framework generalizes beyond the optical domain.

273 **CASSI deep dive.** We examine CASSI in detail as a representative photon-domain
274 modality, using the combined mask-geometry-plus-dispersion mismatch validated by In-
275 verseNet ($dx=0.5 \text{ px}, dy=0.3 \text{ px}, \theta=0.1^\circ, a_1=2.02, \alpha=0.15^\circ$). Under Scenario I (Ideal),

276 GAP-TV¹⁷ achieves 24.34 ± 1.90 dB (mean across 10 KAIST scenes), MST-L⁵ achieves
277 34.81 dB, and HDNet¹⁸ achieves 34.66 dB. Under Scenario II (Mismatch), GAP-TV drops
278 to 20.96 ± 1.62 dB, MST-L to 20.83 dB, and HDNet to 21.88 dB. All solvers collapse to
279 a narrow Scenario II range of 20.83–21.88 dB (mean ~ 21.2 dB), regardless of their ideal-
280 condition performance, confirming that the failure is operator-driven, not solver-driven.
281 Under Scenario IV (Oracle Mask: true forward model applied to mismatched data), GAP-
282 TV recovers to 21.72 ± 1.48 dB, MST-L to 27.33 dB, and HDNet to 21.88 dB (0% correction
283 ceiling recovery). The ceiling recovery varies substantially across solvers: MST-L achieves
284 a recovery ratio of $\rho = 0.46$ (recovering 6.50 dB of the 13.98 dB degradation), while GAP-
285 TV achieves $\rho = 0.22$ (recovering 0.76 dB of 3.38 dB degradation), indicating that under
286 this multi-parameter mismatch the residual degradation has significant contributions from
287 recoverability and noise interactions beyond pure operator mismatch. This demonstrates
288 that PWM correction is solver-agnostic, and also reveals that combined multi-parameter
289 mismatches are substantially harder to correct than isolated shifts.

290 **CACTI results.** Coded aperture compressive temporal imaging (CACTI)¹⁹ exhibits the
291 same pattern. The state-of-the-art method EfficientSCI²⁰ achieves 35.33 dB under ideal
292 conditions but drops to 14.48 dB under mask mismatch—a loss of 20.85 dB. PWM correc-
293 tion recovers 22.94 dB, reaching 37.42 dB (Scenario III), corresponding to a recovery ratio
294 of $\rho > 1.0$ (i.e., the corrected reconstruction slightly exceeds the ideal-condition baseline due
295 to regularization benefits). The CACTI corrected PSNR (37.42 dB) exceeds the Scenario I
296 ideal (35.33 dB), yielding $\rho > 1$. This occurs because the corrected operator provides im-
297 plicit regularization that is absent in the ideal case—a phenomenon analogous to beneficial
298 model mismatch in robust estimation. This is the second-largest correction gain among
299 validated modalities. Temporal modalities are particularly sensitive to mismatch because
300 the mask pattern is replicated across every frame; a single calibration error propagates
301 multiplicatively through the entire video reconstruction.

302 **SPC results.** Single-pixel camera (SPC)²¹ imaging presents a qualitatively different mis-
303 match type: gain bias rather than geometric shift. When the detector gain drifts by 5%
304 from its calibrated value, reconstruction PSNR drops by 12.21 dB. PWM diagnoses this as
305 a **Gate 3** failure localized to the detector gain node in the OPERATORGRAPH DAG and
306 corrects it by estimating the true gain from the measurement statistics. Correction recovers
307 the full 12.21 dB, achieving $\rho = 1.0$.

308 **Gate binding analysis.** Across all 9 correction configurations (7 distinct modalities),
309 we compute the dominant gate assignment. **Gate 3** (operator mismatch) is dominant in
310 every case. This distribution is striking: it demonstrates that the modern computational
311 imaging pipeline is overwhelmingly bottlenecked not by information content or noise, but
312 by the fidelity of the assumed forward model.

313 **Zero-shot generalization.** A key test of universality is whether the correction approach
314 generalizes across carrier families and imaging modalities. We train the beam-search grid
315 and gradient-refinement hyperparameters on incoherent photon-domain modalities (CASSI,
316 CACTI, SPC) and apply the resulting configuration, without modification, to coherent-
317 photon (ptychography), spin-domain (MRI), and particle-domain (CT) modalities. The
318 correction gains remain comparable to the modality-specific tuned values across all carrier
319 families (Figure 6), confirming that the mismatch diagnosis and correction machinery is gen-
320 uinely carrier-agnostic. This zero-shot transfer is possible because the OPERATORGRAPH
321 IR abstracts away carrier-specific details, exposing a uniform perturbation interface to the
322 correction algorithms.

323 **26-modality benchmark.** Beyond the 16 registered correction configurations (of which
324 9 are fully validated across 7 distinct modalities), we compile a broader benchmark of 26
325 modalities for which the OPERATORGRAPH template and adjoint check have been estab-
326 lished; 8 have full Scenario I baselines with validated PSNR, while the remainder are in
327 Phase 2 or Phase 4 validation (see Supplementary Table S3). All 26 modalities pass the
328 automated validation suite (adjoint consistency, gradient flow, dimensional consistency).
329 Among the 8 fully validated modalities, Scenario I PSNR values range from 24.09 dB (CT)
330 to 55.19 dB (MRI). This benchmark establishes the breadth of the OPERATORGRAPH IR
331 and provides a foundation for scaling PWM to the full 64-modality target.

332 Discussion

333 This work introduces the first framework that treats imaging diagnosis as a first-class
334 computational problem alongside reconstruction. The TRIAD LAW provides a universal,
335 quantitative language for decomposing imaging failure into its root causes, and the OPER-
336 ATORGRAPH IR provides the computational substrate for applying this language across 64
337 modalities and five physical carrier families. The empirical finding that **Gate 3** dominates
338 in all validated modalities carries a clear implication for the field: the research community
339 should rebalance its effort from solver-centric to operator-centric approaches. A single cali-
340 bration step that corrects the forward model can recover more reconstruction quality than
341 years of algorithmic innovation.

342 The practical implications are substantial. In clinical MRI, even small coil sensitiv-
343 ity mismatches can produce diagnostic artifacts; PWM provides a systematic pathway to
344 detect and correct these before they affect patient care. In remote sensing, atmospheric
345 model errors degrade hyperspectral unmixing; PWM can diagnose whether the degradation
346 is fundamentally information-limited or correctable through model refinement. In electron
347 microscopy, sample drift during long acquisitions introduces time-varying operator mis-
348 match; the OPERATORGRAPH IR naturally extends to time-indexed DAGs that can model

349 and correct such drift.

350 Several limitations merit discussion, beginning with the most significant. All evaluations
351 in this work are synthetic: the true forward model is known, and mismatch is introduced
352 programmatically. While this enables rigorous quantification, it does not capture the full
353 complexity of real-world calibration errors. Hardware-in-the-loop validation is the essential
354 next step. Second, the forward models used for many non-photon modalities are simplified
355 (Tier 1 or Tier 2 on the Physics Fidelity Ladder); full-wave or Monte Carlo models may
356 reveal failure modes not captured by the current templates. Third, the correction pipeline is
357 limited to the declared mismatch parameter family—it cannot discover mismatch types that
358 are not anticipated in the OPERATORGRAPH template. Expanding the parameter family to
359 include model-form uncertainty (rather than only parametric uncertainty) is an important
360 direction for future work.

361 Looking forward, we envision three extensions. First, hardware-in-the-loop experiments
362 with real optical systems, MRI scanners, and CT gantries to validate PWM under true oper-
363 ational conditions. Second, real-time adaptive calibration that runs the diagnosis-correction
364 loop continuously during acquisition, enabling the forward model to track time-varying sys-
365 tem parameters. Third, scaling to 100+ modalities by leveraging the composability of the
366 OPERATORGRAPH IR, with the goal of compiling a comprehensive atlas of imaging failure
367 modes across all of physics-based sensing. The TRIAD LAW provides the theoretical foun-
368 dation; PWM provides the computational machinery; the remaining challenge is deployment
369 at scale.

370 **Acknowledgements.** We thank the open-source computational imaging community for
371 making reconstruction code and datasets publicly available. This work was supported by
372 NextGen PlatformAI C Corp.

373 **Author Contributions.** C.Y. conceived the project, designed the TRIAD LAW frame-
374 work, developed the OPERATORGRAPH IR, implemented the agent system, performed all
375 experiments, and wrote the manuscript.

376 **Competing Interests.** C.Y. is an employee of NextGen PlatformAI C Corp, which de-
377 velops the PWM platform. The author declares no other competing interests.

378 **Data Availability.** All synthetic measurement data used in this study can be regenerated
379 using the OPERATORGRAPH templates and mismatch parameters specified in the Supple-
380 mentary Information. The KAIST hyperspectral dataset⁶ used for CASSI experiments is
381 publicly available.

382 **Code Availability.** The PWM codebase, including all OPERATORGRAPH templates, agent
383 implementations, and evaluation scripts, is available at <https://github.com/integritynoble/>

384 [Physics_World_Model](#) under the MIT license.

385 **Correspondence.** Correspondence and requests for materials should be addressed to
386 C.Y. (integrityyyang@gmail.com).

387 **Online Methods**

388 **OperatorGraph Specification**

389 **Formal definition.** The OPERATORGRAPH intermediate representation encodes the for-
390 ward physics of any computational imaging modality as a directed acyclic graph (DAG)
391 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$. Each node $v_i \in \mathcal{V}$ wraps a *primitive operator* and implements two entry points:
392 `forward`(x) $\rightarrow y$ and `adjoint`(y) $\rightarrow x$, the latter defined only when the primitive is lin-
393 ear. Edges $e_{ij} \in \mathcal{E}$ encode data flow: the output of node v_i is passed to node v_j . Each
394 node additionally exposes a set of learnable parameters θ_i that may be perturbed during
395 mismatch simulation or optimized during calibration, as well as read-only metadata flags
396 (`is_linear`, `is_stochastic`, `is_differentiable`). The graph is stored as a declarative
397 YAML specification (`OperatorGraphSpec`) and compiled to an executable `GraphOperator`
398 object by the `GraphCompiler`.

399 **Node types.** Primitive operators fall into two categories:

400 • **Linear operators.** Convolution (`conv2d`), mask modulation (`mask_modulate`), sub-
401 pixel shift (`subpixel_shift_2d`), Radon transform (`radon_fanbeam`), Fourier encod-
402 ing (`fourier_encode`), spectral dispersion (`spectral_disperse`), Fresnel propagation
403 (`fresnel_propagate`), random projection (`random_project`), and structured illumina-
404 tion (`sim_modulate`). Each implements both `forward()` and `adjoint()`.

405 • **Nonlinear operators.** Squared magnitude (`magnitude_sq`), Poisson–Gaussian noise
406 (`poisson_gaussian`), saturation clipping (`saturation_clip`), phase retrieval nonlin-
407 arity (`phase_abs`), and detector quantization (`quantize`). These set `is_linear =`
408 `False` and raise `NotImplementedError` on `adjoint()`, except where a well-defined
409 pseudo-adjoint exists (e.g., the identity adjoint for magnitude-squared in Gerchberg–
410 Saxton-type algorithms).

411 **Adjoint validation.** Correctness of every linear primitive is verified by a randomized
412 dot-product test. For a primitive A with forward map $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$, we draw $x \sim \mathcal{N}(0, I_n)$
413 and $y \sim \mathcal{N}(0, I_m)$ and compute

$$\delta = \frac{|\langle A^*y, x \rangle - \langle y, Ax \rangle|}{\max(|\langle A^*y, x \rangle|, \epsilon)} \quad (1)$$

414 where $\epsilon = 10^{-12}$ guards against division by zero. The test is repeated $n_{\text{trials}} = 5$ times
 415 with independent random draws; the primitive passes if $\delta_{\text{max}} < 10^{-6}$. At the graph level, a
 416 compiled `GraphOperator` composed entirely of linear nodes executes the same test over the
 417 composed forward-adjoint chain. A `GraphAdjointCheckReport` records n_{trials} , δ_{max} , and $\bar{\delta}$
 418 for audit. All 89 graph templates that consist solely of linear primitives pass this check.

419 **Graph compilation.** The compiler executes a four-stage pipeline:

- 420 1. **Validate.** Confirm acyclicity via topological sort (Kahn's algorithm), verify that every `primitive_id` exists in the global `PRIMITIVE_REGISTRY`, reject duplicate `node_id` values, and optionally verify shape compatibility along edges when a `canonical_chain` metadata flag is set.
- 424 2. **Bind.** Instantiate each primitive with its parameter dictionary θ_i .
- 425 3. **Plan forward.** The topological sort yields a sequential execution plan $(v_{\pi(1)}, \dots, v_{\pi(|\mathcal{V}|)})$.
- 426 4. **Plan adjoint.** For graphs where `all_linear = True`, the adjoint plan reverses the
 427 topological order and applies each node's individual adjoint in sequence, implementing
 428 the chain rule $A^* = A_{|\mathcal{V}|}^* \circ \dots \circ A_1^*$ for a composition $A = A_{|\mathcal{V}|} \circ \dots \circ A_1$. For
 429 graphs containing nonlinear nodes, the adjoint plan is not generated, and any call to
 430 `adjoint()` raises `NotImplementedError` at runtime.

431 The compiled `GraphOperator` is serializable to JSON and hashable via SHA-256 for prove-
 432 nance tracking in RunBundle manifests.

433 **Template library.** The `graph_templates.yaml` registry contains 89 templates organized
 434 across 64 modalities, grouped by physical carrier:

- 435 • **Photons (optical):** CASSI, SPC, CACTI, structured illumination microscopy (SIM),
 436 confocal, light-sheet, holography, ptychography, Fourier ptychographic microscopy
 437 (FPM), optical coherence tomography (OCT), lensless imaging, light field, integral
 438 imaging, neural radiance fields (NeRF), Gaussian splatting, fluorescence lifetime imag-
 439 ing (FLIM), diffuse optical tomography (DOT), and phase retrieval.
- 440 • **Electrons:** Electron diffraction, electron backscatter diffraction (EBSD), electron
 441 energy loss spectroscopy (EELS), and electron holography.
- 442 • **Spins (MRI):** Functional MRI (fMRI), diffusion-weighted MRI (DW-MRI), and
 443 magnetic resonance spectroscopy (MRS).
- 444 • **Acoustic:** Ultrasound B-mode, Doppler ultrasound, shear-wave elastography, sonar,
 445 and photoacoustic tomography (combines optical excitation with acoustic detection).
- 446 • **Particles:** X-ray computed tomography (CT), cone-beam CT (CBCT), neutron to-
 447 mography, proton radiography, and muon tomography.

448 **Physics Fidelity Ladder.** Each template is parameterized by a fidelity tier that controls
449 the degree of physical realism in the simulated forward model:

450 **Tier 1 (Linear, shift-invariant):** The forward model is a linear, spatially uniform operator—
451 the simplest approximation, suitable for initial diagnostics and rapid prototyping.

452 **Tier 2 (Linear, shift-variant):** Spatially varying operator parameters (e.g. non-uniform
453 illumination, position-dependent PSF, multi-coil sensitivity maps in MRI). Adds a
454 modality-appropriate noise model (Poisson shot noise plus Gaussian read noise for
455 photon-counting modalities, Rician noise for MRI, Poisson for CT).

456 **Tier 3 (Nonlinear, ray/wave-based):** Includes nonlinear effects such as wavefront cur-
457 vature, diffraction, and scattering. Perturbation families and ranges are specified in
458 `mismatch_db.yaml`.

459 **Tier 4 (Full-wave / Monte Carlo):** Complete physical simulation including wave-optical
460 propagation, spatially varying aberrations, detector nonlinearities, and environmen-
461 tal drift. Currently implemented for holography and ptychography; other modalities
462 degrade gracefully to Tier 3.

463 **Triad Law Formalization**

464 The TRIAD LAW asserts that the quality of any computational imaging reconstruction is
465 bounded by three fundamental gates. Rather than a qualitative guideline, PWM quantifies
466 each gate numerically and uses the resulting scores to diagnose the dominant bottleneck in
467 any imaging configuration.

468 **Gate 1 (Recoverability).** Recoverability measures the information-theoretic capacity
469 of the sensing geometry. We quantify it via the *effective compression ratio* $r = m/n$, where
470 m is the number of independent measurements and n the dimension of the signal. The
471 `compression_db.yaml` registry (1,186 lines) stores, for each modality, a lookup table map-
472 ping compression ratio to expected reconstruction PSNR under ideal conditions, obtained
473 from calibration experiments or published benchmarks. Each entry carries a `provenance`
474 field citing the source (paper DOI, internal experiment ID, or theoretical formula). Addi-
475 tional recoverability indicators include the effective rank of the measurement matrix (est-
476 imated via randomized SVD for large operators), the dimension of the null space, and the
477 restricted isometry property (RIP) constant where analytically tractable (*e.g.*, for Gaussian
478 random projections in SPC).

479 **Gate 2 (Carrier Budget).** The carrier budget quantifies the signal-to-noise ratio (SNR)
480 of the measurement channel. The `PhotonAgent` consumes the `photon_db.yaml` registry
481 (624 lines) which stores, per modality, a deterministic photon model parameterized by

482 source power, quantum efficiency, exposure time, and detector characteristics. The agent
 483 classifies the noise regime into one of three categories: *shot-limited* (Poisson-dominated,
 484 $\text{SNR} \propto \sqrt{N_{\text{photon}}}$), *read-limited* (Gaussian read noise dominates, $\text{SNR} \propto N_{\text{photon}}/\sigma_{\text{read}}$),
 485 and *dark-current-limited* (long exposures where dark current accumulation dominates). The
 486 output is a `PhotonReport` containing the estimated SNR in decibels, the noise regime
 487 classification, per-element photon count, and a feasibility verdict (`sufficient`, `marginal`,
 488 or `insufficient`).

489 **Gate 3 (Operator Mismatch).** Operator mismatch quantifies the discrepancy between
 490 the assumed forward model H_{nom} and the true physical operator H_{true} . The `MismatchAgent`
 491 consults `mismatch_db.yaml` (797 lines) which catalogs, for each modality, the set of mis-
 492 match parameters (spatial shifts, rotational offsets, dispersion errors, PSF deviations, coil
 493 sensitivity errors, center-of-rotation offsets, *etc.*), their typical ranges, and available cor-
 494 rection methods. The mismatch severity score $s \in [0, 1]$ is computed as the normalized ℓ_2
 495 distance $\|\boldsymbol{\theta}_{\text{true}} - \boldsymbol{\theta}_{\text{nom}}\|/\|\boldsymbol{\theta}_{\text{range}}\|$, where $\boldsymbol{\theta}_{\text{range}}$ is the per-parameter dynamic range from the
 496 registry. Sensitivity analysis $\partial \text{PSNR} / \partial \theta_k$ is estimated via finite differences on the forward
 497 model. The output is a `MismatchReport` containing the severity score, the dominant mis-
 498 match parameter, the recommended correction method, and the expected PSNR gain from
 499 correction.

500 **Gate binding determination.** Given reconstruction results under the four-scenario pro-
 501 tocol (the Evaluation Protocol section below), PWM identifies the dominant gate by com-
 502 paring three cost terms:

$$C_{\text{mismatch}} = \text{PSNR}_{\text{I}} - \text{PSNR}_{\text{II}} \quad (2)$$

$$C_{\text{noise}} = \text{PSNR}_{\text{ideal}} - \text{PSNR}_{\text{noisy}} \quad (3)$$

$$C_{\text{recover}} = \text{PSNR}_{\text{limit}} - \text{PSNR}_{\text{I}} \quad (4)$$

503 where PSNR_{I} is the reconstruction PSNR under Scenario I (ideal operator), PSNR_{II} under
 504 Scenario II (mismatched operator), $\text{PSNR}_{\text{noisy}}$ under the corresponding noisy condition,
 505 and $\text{PSNR}_{\text{limit}}$ is the theoretical upper bound from the compression table. The dominant
 506 gate is $\arg \max_g C_g$.

507 **TriadReport schema.** The analysis output is a Pydantic-validated `TRIADREPORT` com-
 508 prising: `dominant_gate` (enum: `recoverability`, `carrier_budget`, `operator_mismatch`),
 509 `evidence_scores` (three floats, one per gate), `confidence_interval` (float, 95% CI width
 510 from bootstrap), `recommended_action` (string, *e.g.* “increase compression ratio” or “apply
 511 mismatch correction”), and `parameter_sensitivities` (dictionary mapping each mismatch
 512 parameter name to its $\partial \text{PSNR} / \partial \theta_k$ value).

513 **Recovery ratio.** We define the *recovery ratio*

$$\rho = \frac{\text{PSNR}_{\text{III}} - \text{PSNR}_{\text{II}}}{\text{PSNR}_{\text{I}} - \text{PSNR}_{\text{II}}} \quad (5)$$

514 which lies in $[0, 1]$ under standard convexity conditions (see Supplementary Note 1 for
515 formal analysis; values $\rho > 1$ are possible when the corrected operator provides beneficial
516 regularization). $\rho = 0$ indicates that calibration yields no benefit (mismatch is not the
517 bottleneck), while $\rho = 1$ indicates that calibration fully closes the mismatch gap.

518 Agent System Architecture

519 The PWM agent system comprises 6 specialist agents, 1 optional hybrid agent, and 8
520 support classes totalling 10,545 lines of Python. All agents execute deterministically; no
521 large language model (LLM) is required for pipeline operation.

522 **PlanAgent.** The orchestrator agent. Given a user prompt or a structured `ExperimentSpec`,
523 PlanAgent parses the intent (`simulate`, `operator_correction`, or `auto`), maps the re-
524 quested modality to its canonical key via the `modalities.yaml` registry (which contains 64
525 modality entries with keywords, forward model equations, and default solvers), builds an
526 `ImagingSystem` contract, and dispatches to the appropriate sub-agents. When the mode is
527 `auto`, PlanAgent inspects the available data and operator specification to determine whether
528 simulation or operator correction is more appropriate.

529 **PhotonAgent.** Computes SNR feasibility deterministically from the `photon_db.yaml`
530 registry. For each modality and photon-level tier (`bright`, `standard`, `low_light`), the agent
531 evaluates the photon budget by combining source power, quantum efficiency, exposure time,
532 and noise model parameters. The output `PhotonReport` is a strict Pydantic model contain-
533 ing `noise_regime` (enum), `snr_db` (float), `feasibility` (enum), and `per_element_photons`
534 (float).

535 **RecoverabilityAgent.** A table-driven agent that consults `compression_db.yaml` (1,186
536 lines) to map the modality and compression ratio to an expected PSNR range. Each table
537 entry includes provenance metadata citing the original source. The output `RecoverabilityReport`
538 contains `compression_ratio`, `psnr_prediction`, `feasibility`, and `null_space_dim` where
539 available.

540 **MismatchAgent.** Scores the mismatch severity for a given imaging configuration us-
541 ing `mismatch_db.yaml` (797 lines). For each modality, the database enumerates the rel-
542 evant mismatch parameters, their physical units, typical perturbation ranges, and avail-
543 able correction algorithms. The output `MismatchReport` includes `severity` (float, 0–1),
544 `correction_method` (string), `expected_gain_db` (float), and `dominant_parameter` (string).

545 **AnalysisAgent.** The bottleneck classifier. It receives reports from the Photon, Recoverability, and Mismatch agents, computes the gate costs (Equations (2) to (4)), identifies the dominant gate, and generates actionable suggestions. The AnalysisAgent also computes the recovery ratio ρ and its bootstrap confidence interval.

549 **AgentNegotiator.** Implements a cross-agent veto protocol. Before reconstruction is authorized, the negotiator inspects all three upstream reports and applies three veto conditions: (1) low photon budget combined with aggressive compression (C_{noise} and C_{recover} both large); (2) severe mismatch (severity > 0.7) without a planned correction step; (3) joint probability below the floor threshold ($p_{\text{joint}} < 0.15$), indicating that all three subsystems are simultaneously marginal. When any veto fires, reconstruction halts with an actionable explanation and suggested remediation.

556 **HybridAgent.** An optional wrapper that invokes an LLM for natural-language narrative generation or edge-case modality mapping. All quantitative decisions remain on the deterministic code path; the HybridAgent is never required for pipeline operation.

559 **Support classes.** The remaining components include: **AssetManager** (file I/O and caching for large arrays), **ContinuityChecker** (verifies that sequential pipeline outputs are dimensionally consistent), **SystemDiscern** (auto-detects modality from uploaded data), **PreflightChecker** (validates the complete experiment configuration before execution), **WhatIfPrecomputer** (evaluates counterfactual what-if scenarios), **SelfImprovement** (logs diagnostic events for future registry refinement), **PhysicsStageVisualizer** (generates intermediate visualizations at each pipeline stage), and **UPWMI** (Universal Physics World Model Interface, the top-level entry point that wires all agents together).

567 **Contract system.** Inter-agent communication uses 25 Pydantic v2 contract models. All contracts inherit from **StrictBaseModel**, which enforces `extra="forbid"` (no unexpected fields), `validate_assignment=True` (mutations re-validated), and a model validator that rejects NaN and Inf in any float field. Bounded scores use `Field(ge=0.0, le=1.0)`. Enums are string enums for human-readable JSON serialization. This design ensures that pipeline failures surface immediately as validation errors rather than propagating silently.

573 **YAML registries.** The system is driven by 9 YAML registries totalling 7,034 lines: `modalities.yaml` (modality definitions), `graph_templates.yaml` (OperatorGraph skeletons), `photon_db.yaml` (photon models), `mismatch_db.yaml` (mismatch parameters and correction methods), `compression_db.yaml` (recoverability tables with provenance), `solver_registry.yaml` (solver configurations), `primitives.yaml` (primitive operator metadata), `dataset_registry.yaml` (dataset locations and formats), and `acceptance_thresholds.yaml` (pass/fail thresholds per metric).

580 **Correction Algorithms**

581 We implement two complementary algorithms for operator mismatch correction. Crucially,
582 both algorithms operate on the forward operator parameters θ rather than the reconstruc-
583 tion solver weights, making them *solver-agnostic*: the corrected operator $H(\hat{\theta})$ benefits any
584 downstream solver (GAP-TV, MST-L, HDNet¹⁸, CST, *etc.*) without retraining.

585 **Algorithm 1: Hierarchical Beam Search.** The coarse correction phase employs a
586 hierarchical search strategy to rapidly explore the mismatch parameter space. For CASSI,
587 the five-parameter mismatch model comprises mask affine parameters (spatial shifts dx, dy
588 and rotation θ) and dispersion parameters (slope a_1 and axis angle α); an optional sixth
589 parameter, PSF width σ_{psf} , is available but not used in the primary experiments. The
590 algorithm proceeds as follows:

- 591 1. **1D sweeps.** Each parameter is swept independently over its full range while holding
592 others at nominal values. This produces five 1D cost curves from which coarse optima
593 are extracted.
- 594 2. **3D beam search.** The mask affine subspace (dx, dy, θ) is searched over a $5 \times 5 \times 5$
595 grid centered on the 1D optima. The top- k ($k = 5$) candidates by reconstruction
596 PSNR are retained.
- 597 3. **2D beam search.** For each retained mask candidate, the dispersion subspace (a_1, α)
598 is searched over a 5×7 grid. The joint top- k candidates are retained.
- 599 4. **Coordinate descent refinement.** Three rounds of univariate refinement on each
600 parameter, shrinking the search interval by factor 2 at each round, produce the final
601 estimate $\hat{\theta}_{\text{Alg1}}$.

602 Total runtime is approximately 300 seconds per scene on a single GPU. Accuracy is
603 $\pm 0.1\text{--}0.2$ pixels for spatial parameters and $\pm 0.05^\circ$ for angular parameters.

604 **Algorithm 2: Joint Gradient Refinement.** The fine correction phase uses a differen-
605 tiable forward model to jointly optimize all mismatch parameters via gradient descent. The
606 key components are:

- 607 1. **Differentiable mask warp.** The binary mask is warped by a continuous affine
608 transformation using bilinear interpolation, implemented as a custom PyTorch module
609 (`DifferentiableMaskWarpFixed`). The mask values are passed through a straight-
610 through estimator (STE) to maintain binary structure while permitting gradient flow.
- 611 2. **Differentiable forward model.** The CASSI forward model $y = \text{CASSI}(x; \theta)$ is
612 implemented as a differentiable PyTorch module (`DifferentiableCassiForwardSTE`)
613 that accepts mismatch parameters as differentiable inputs.

614 3. **GPU grid initialization.** A full-range 3D grid search over (dx, dy, θ) with $9 \times 9 \times 7 =$
615 567 points provides diverse starting candidates. The top 9 candidates seed multi-start
616 gradient refinement.

617 4. **Staged gradient refinement.** Each of the 9 candidates is refined using Adam
618 optimization (learning rate 10^{-2} , decaying to 10^{-3}) for 200 steps. For each candidate,
619 4 random restarts with jittered initialization guard against local minima. The loss
620 function is the negative PSNR computed via an unrolled K -iteration differentiable
621 GAP-TV solver (`DifferentiableGAPTV`, $K = 10$ unrolled iterations).

622 Total runtime for Algorithm 2 is approximately 3,200 seconds (200 steps \times 4 restarts \times
623 9 candidates with early stopping). Accuracy improves to ± 0.05 –0.1 pixels, a 3–5 \times improve-
624 ment over Algorithm 1. The two algorithms are used sequentially in practice: Algorithm 1
625 provides a warm start, and Algorithm 2 refines to sub-pixel precision.

626 Evaluation Protocol

627 **Four-Scenario Protocol.** We evaluate every modality under four standardized scenarios
628 that isolate different sources of quality degradation:

629 **Scenario I (Ideal):** $\mathbf{y}_{\text{obs}} = H_{\text{true}} \mathbf{x}_{\text{gt}}$; reconstruct with H_{true} . This yields the oracle upper
630 bound on reconstruction quality, limited only by the sensing geometry and solver
631 convergence.

632 **Scenario II (Mismatch):** $\mathbf{y}_{\text{obs}} = H_{\text{true}} \mathbf{x}_{\text{gt}}$; reconstruct with H_{nom} ($H_{\text{nom}} \neq H_{\text{true}}$). This
633 is the standard operating condition in practice: the measurement is generated by the
634 true physics, but the reconstruction uses a nominal (potentially mismatched) forward
635 model.

636 **Scenario III (Corrected):** $\mathbf{y}_{\text{obs}} = H_{\text{true}} \mathbf{x}_{\text{gt}}$; reconstruct with $\hat{H} = H(\hat{\theta})$ where $\hat{\theta}$ is
637 estimated by Algorithms 1 and 2. This quantifies the benefit of mismatch calibration.

638 **Scenario IV (Oracle Mask):** $\mathbf{y}_{\text{obs}} = H_{\text{true}} \mathbf{x}_{\text{gt}}$; reconstruct with H_{true} . Provides the cor-
639 rection ceiling: the best reconstruction achievable when the true operator is known
640 exactly, applied to data generated under mismatch conditions. The gap between
641 Scenario IV and Scenario I reveals the irreducible loss from mismatch-induced mea-
642 surement degradation.

643 **Metrics.** Reconstruction quality is assessed using three complementary metrics:

- 644 • **PSNR** (peak signal-to-noise ratio, in dB): the primary metric, computed per scene
645 and averaged. For signals normalized to $[0, 1]$, $\text{PSNR} = 10 \log_{10}(1/\text{MSE})$. For SPC
646 data normalized to $[0, 255]$, the peak value is 255.

647 • **SSIM** (structural similarity index): captures perceptual quality including luminance,
 648 contrast, and structural components, computed with a Gaussian window of width 11
 649 and standard deviation 1.5.

650 • **SAM** (spectral angle mapper): for hyperspectral modalities (CASSI), measures the
 651 angle between predicted and true spectral vectors at each spatial location, reported
 652 in degrees. Lower is better.

653 **Datasets.**

654 • **CASSI:** 10 scenes from the KAIST dataset⁶, each a $256 \times 256 \times 28$ spectral cube (28
 655 spectral bands from 450 nm to 650 nm). Data range $[0, 1]$.

656 • **CACTI:** 6 benchmark videos, each $256 \times 256 \times 8$ (8 temporal frames encoded per
 657 snapshot). Data range $[0, 1]$.

658 • **SPC:** 11 natural images from the Set11 benchmark, each 256×256 grayscale. Data
 659 range $[0, 255]$.

660 All per-scene metrics are reported individually as well as averaged, and all reconstruction
 661 arrays are saved as NumPy NPZ files.

662 **Experimental Details**

663 **Hardware.** All experiments are conducted on a single NVIDIA GPU. Algorithm 1 (beam
 664 search) and all solver-based reconstructions use the GPU for matrix–vector products and
 665 FFT operations. Algorithm 2 (gradient refinement) additionally uses PyTorch automatic
 666 differentiation on the same GPU.

667 **CASSI configuration.** The coded aperture snapshot spectral imaging (CASSI) system
 668 uses a TSA-Net binary mask of dimensions 256×256 , with 28 spectral bands dispersed along
 669 the spatial dimension. The five-parameter mismatch model $\psi = (dx, dy, \theta, a_1, \alpha)$ describes:
 670 mask spatial shift in x (dx , pixels), mask spatial shift in y (dy , pixels), mask rotation angle
 671 (θ , degrees), dispersion slope (a_1 , pixels per band), and dispersion axis angle (α , degrees).
 672 An optional sixth parameter, PSF blur width (σ_{psf} , pixels), is available but not used in the
 673 primary experiments. For the primary mismatch experiment (validated by InverseNet), the
 674 true mismatch parameters are $\psi_{\text{true}} = (dx = 0.5 \text{ px}, dy = 0.3 \text{ px}, \theta = 0.1^\circ, a_1 = 2.02, \alpha =$
 675 0.15°). Solvers evaluated include TwIST²², GAP-TV¹⁷, DGSMP²³, MST-L⁵, and CST-
 676 L²⁴, all of which receive the same operator and differ only in their reconstruction algorithm.
 677 The supplementary per-scene analysis additionally includes DeSCI²⁵ and HDNet¹⁸.

678 **CACTI configuration.** The coded aperture compressive temporal imaging system uses
679 binary temporal masks of dimensions 256×256 , encoding 8 video frames into a single
680 snapshot measurement. Mismatch is parameterized as a temporal mask timing offset (sub-
681 frame shift). The default solver is GAP-TV with total-variation regularization.

682 **SPC configuration.** The single-pixel camera uses random binary measurement patterns
683 at three compression ratios: 10%, 25%, and 50% ($r = m/n \in \{0.10, 0.25, 0.50\}$). Mismatch
684 is modeled as a multiplicative gain bias on the measurement matrix. The default solver is
685 ADMM-TV with total-variation regularization and a wavelet sparsifying transform.

686 **MRI configuration.** Cartesian k -space sampling with $4 \times$ acceleration (25% of k -space
687 lines acquired). Mismatch is parameterized as a 5% multiplicative error in the coil sensitivity
688 maps used for parallel imaging reconstruction. The default solver is SENSE with ℓ_1 -wavelet
689 regularization.

690 **CT configuration.** Fan-beam geometry with 180 projections over 180° . Mismatch is
691 modeled as a center-of-rotation (CoR) offset, which produces characteristic arc artifacts in
692 the reconstruction. The default solver is filtered back-projection (FBP) with a Ram-Lak
693 filter, supplemented by iterative SART for comparison.

694 Statistical Analysis

695 **Per-scene reporting.** All metrics are reported per scene, not merely as dataset averages.
696 This enables identification of scene-dependent failure modes (*e.g.*, spectrally flat scenes that
697 are inherently harder for CASSI, or textureless regions that challenge SPC).

698 **Summary statistics.** For each modality and scenario, we report the mean \pm standard
699 deviation of PSNR, SSIM, and SAM across all scenes. For CASSI (10 scenes), we addition-
700 ally report the per-band PSNR to assess spectral uniformity of reconstruction quality.

701 **Recovery ratio confidence intervals.** The recovery ratio ρ (Equation (5)) is a ratio of
702 differences and therefore sensitive to noise in the constituent PSNR values. We compute
703 95% confidence intervals via the bootstrap percentile method with $B = 1,000$ resamples. At
704 each bootstrap iteration, we resample the scene set with replacement, recompute the mean
705 PSNR for each scenario, and derive ρ . The 2.5th and 97.5th percentiles of the bootstrap
706 distribution define the 95% CI.

707 **Parameter recovery accuracy.** For mismatch correction experiments, we report the
708 root-mean-square error (RMSE) between the estimated and true mismatch parameters:

$$\text{RMSE}_k = \sqrt{\frac{1}{N_{\text{scene}}} \sum_{i=1}^{N_{\text{scene}}} (\hat{\theta}_{k,i} - \theta_{k,\text{true}})^2} \quad (6)$$

709 where k indexes the mismatch parameter, i indexes the scene, and N_{scene} is the number of
710 test scenes. Uncertainty in the RMSE is estimated via bootstrap ($B = 1,000$).

711 **Ablation significance.** Ablation studies (removal of PhotonAgent, RecoverabilityAgent,
712 MismatchAgent, or RunBundle discipline) are evaluated by comparing the full-pipeline
713 PSNR against each ablated variant. We report the PSNR difference ΔPSNR per modality
714 and verify that each component contributes ≥ 0.5 dB across all depth modalities, establishing
715 practical significance.

716 Code and Data Availability

717 **Source code.** The complete PWM framework, including all agents, the OperatorGraph
718 compiler, correction algorithms, YAML registries, and evaluation scripts, is released as
719 open-source software under the MIT license at <https://github.com/integritynoble/>
720 **Physics_World_Model**. The codebase is organized into two Python packages: `pwm_core`
721 (core framework, agents, graph compiler, calibration algorithms) and `pwm_AI_Scientist`
722 (automated experiment generation and analysis).

723 **Reconstruction data.** All reconstruction arrays from every experiment—Scenarios I
724 through IV for each modality and solver—are released as NumPy NPZ files. Files are
725 stored using Git LFS and require `allow_pickle=True` for loading. Data ranges are stan-
726 dardized: CASSI and CACTI reconstructions are normalized to $[0, 1]$; SPC reconstructions
727 are in $[0, 255]$.

728 **Experiment manifests.** Every experiment is recorded in a RunBundle v0.3.0 manifest
729 containing: the git commit hash at execution time, all random number generator seeds,
730 platform information (Python version, GPU model, CUDA version), SHA-256 hashes of all
731 input data and output artifacts, metric values, and wall-clock timestamps. These manifests
732 enable exact reproduction of every reported result.

733 **Registry data.** All 9 YAML registries (7,034 lines total) that drive the agent system—
734 including modality definitions, graph templates, photon models, mismatch databases, com-
735 pression tables, solver configurations, primitive specifications, dataset paths, and acceptance
736 thresholds—are publicly available in the repository under `packages/pwm_core/contrib/`.

737 The `ExperimentSpec` JSON schemas used for pipeline input validation are included along-
738 side worked examples in `examples/`.

739 References

740 [1] Candès, E. J. & Wakin, M. B. An introduction to compressive sampling. *IEEE Signal
741 Processing Magazine* **25**, 21–30 (2008).

742 [2] Donoho, D. L. Compressed sensing. *IEEE Transactions on Information Theory* **52**,
743 1289–1306 (2006).

744 [3] Venkatakrishnan, S. V., Bouman, C. A. & Wohlberg, B. Plug-and-play priors for
745 model based reconstruction. In *Proceedings of the IEEE Global Conference on Signal
746 and Information Processing (GlobalSIP)*, 945–948 (2013).

747 [4] Monga, V., Li, Y. & Eldar, Y. C. Algorithm unrolling: Interpretable, efficient deep
748 learning for signal and image processing. *IEEE Signal Processing Magazine* **38**, 18–44
749 (2021).

750 [5] Cai, Y. *et al.* Mask-guided spectral-wise transformer for efficient hyperspectral image
751 reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
752 Pattern Recognition (CVPR)*, 17502–17511 (2022).

753 [6] Choi, I., Jeon, D. S., Nam, G., Gutierrez, D. & Kim, M. H. High-quality hyperspectral
754 reconstruction using a spectral prior. *ACM Transactions on Graphics (Proceedings of
755 SIGGRAPH Asia)* **36**, 218:1–218:13 (2017).

756 [7] Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: The application of compressed
757 sensing for rapid MR imaging. *Magnetic Resonance in Medicine* **58**, 1182–1195 (2007).

758 [8] Zbontar, J. *et al.* fastMRI: An open dataset and benchmarks for accelerated MRI.
759 *arXiv preprint arXiv:1811.08839* (2018).

760 [9] Chen, H. *et al.* Low-dose CT with a residual encoder-decoder convolutional neural
761 network. *IEEE Transactions on Medical Imaging* **36**, 2524–2535 (2017).

762 [10] Uecker, M. *et al.* ESPIRiT — an eigenvalue approach to autocalibrating parallel MRI:
763 where SENSE meets GRAPPA. *Magnetic Resonance in Medicine* **71**, 990–1001 (2014).

764 [11] Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval
765 algorithm for diffractive imaging. *Ultramicroscopy* **109**, 1256–1262 (2009).

766 [12] Antun, V., Renna, F., Poon, C., Adcock, B. & Hansen, A. C. On instabilities of
767 deep learning in image reconstruction and the potential costs of AI. *Proceedings of the
768 National Academy of Sciences* **117**, 30088–30098 (2020).

769 [13] Wagadarikar, A. A., John, R., Willett, R. & Brady, D. J. Single disperser design for
770 coded aperture snapshot spectral imaging. *Applied Optics* **47**, B44–B51 (2008).

771 [14] Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting
772 illumination. *Applied Physics Letters* **85**, 4795–4797 (2004).

773 [15] Pruessmann, K. P., Weiger, M., Scheidegger, M. B. & Boesiger, P. SENSE: Sensitivity
774 encoding for fast MRI. *Magnetic Resonance in Medicine* **42**, 952–962 (1999).

775 [16] Feldkamp, L. A., Davis, L. C. & Kress, J. W. Practical cone-beam algorithm. *Journal
776 of the Optical Society of America A* **1**, 612–619 (1984).

777 [17] Yuan, X. Generalized alternating projection based total variation minimization for
778 compressive sensing. In *Proceedings of the IEEE International Conference on Image
779 Processing (ICIP)*, 2539–2543 (2016).

780 [18] Hu, X. *et al.* HDNet: High-resolution dual-domain learning for spectral compressive
781 imaging. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
782 Recognition (CVPR)*, 17542–17551 (2022).

783 [19] Llull, P. *et al.* Coded aperture compressive temporal imaging. *Optics Express* **21**,
784 10526–10545 (2013).

785 [20] Wang, L., Cao, M. & Yuan, X. EfficientSCI: Densely connected network with space-
786 time factorization for large-scale video snapshot compressive imaging. In *Proceedings
787 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
788 18477–18486 (2023).

789 [21] Duarte, M. F. *et al.* Single-pixel imaging via compressive sampling. *IEEE Signal
790 Processing Magazine* **25**, 83–91 (2008).

791 [22] Bioucas-Dias, J. M. & Figueiredo, M. A. T. A new TwIST: Two-step iterative shrink-
792 age/thresholding algorithms for image restoration. *IEEE Transactions on Image Pro-
793 cessing* **16**, 2992–3004 (2007).

794 [23] Huang, T., Dong, W., Yuan, X., Wu, J. & Shi, G. Deep gaussian scale mixture prior
795 for spectral compressive imaging. In *Proceedings of the IEEE/CVF Conference on
796 Computer Vision and Pattern Recognition (CVPR)*, 16216–16225 (2021).

797 [24] Cai, Y. *et al.* CST: Compact spectral transformer for hyperspectral image reconstruc-
798 tion. In *Proceedings of the European Conference on Computer Vision (ECCV)* (2022).

799 [25] Liu, Y., Yuan, X., Suo, J., Brady, D. J. & Dai, Q. Rank minimization for snapshot
800 compressive imaging. *IEEE Transactions on Pattern Analysis and Machine Intelligence*
801 **41**, 2990–3006 (2019).

802 **Figure 1 | PWM overview.** The Physics World Models pipeline. **a**, A computational
803 imaging system is compiled into an OPERATORGRAPH DAG. **b**, The TRIAD LAW diagnostic
804 agents evaluate each gate. **c**, The dominant gate is identified and a TRIADREPORT is
805 produced. **d**, If **Gate 3** dominates, autonomous correction refines the forward model param-
806 eters. **e**, The original solver is re-run with the corrected operator, recovering reconstruction
807 quality without retraining.

808 **Figure 2 | OperatorGraph IR and Physics Fidelity Ladder.** **a**, Example OPERA-
809 TORGRAPH DAGs for three modalities: CASSI (photon), MRI (spin), and CT (particle).
810 Each node wraps a primitive operator; edges define data flow. **b**, The Physics Fidelity
811 Ladder. Tier 1: linear shift-invariant. Tier 2: linear shift-variant. Tier 3: nonlinear
812 ray/wave-based. Tier 4: full-wave/Monte Carlo. **c**, Summary statistics: 89 templates, 64
813 modalities, 5 carrier families.

814 **Figure 3 | Triad Law structure and gate binding.** **a**, Decision tree for the TRIAD
815 LAW: each imaging failure is routed through **Gate 1**, **Gate 2**, and **Gate 3** to produce a
816 TRIADREPORT. **b**, Gate binding heatmap across 9 correction configurations (7 distinct
817 modalities). Red indicates **Gate 3** dominance (all modalities), blue indicates **Gate 1**, and
818 amber indicates **Gate 2**. **c**, Recovery ratio ρ distribution across all 9 correction configura-
819 tions.

820 **Figure 4 | 16-modality correction results.** Bar chart showing correction gain Δ_{corr}
821 (dB) for each of the 9 correction configurations (7 distinct modalities), grouped by carrier
822 family. Photon modalities (CASSI, CACTI, SPC, Lensless, Ptychography) in blue; spin
823 (MRI) in purple; X-ray (CT) in red; generic (Matrix) in grey.

824 **Figure 5 | CASSI and CACTI deep dive.** **a**, CASSI: PSNR across 4 scenarios for
825 GAP-TV, MST-L, and HDNet under combined mask-geometry-plus-dispersion mismatch.
826 The uniform collapse under Scenario II (range 20.83–21.88 dB) confirms operator-driven
827 failure; oracle recovery varies by solver ($\rho = 0.22$ –0.46). **b**, CACTI: EfficientSCI across 4
828 scenarios, showing 20.85 dB mismatch degradation and $\rho > 1.0$ (full recovery with regu-
829 larization benefit). **c**, Example reconstructed spectral datacubes: Ideal, Mismatched, and
830 Corrected.

831 **Figure 6 | Zero-shot generalization across carrier families.** Correction gain (dB)
832 when beam-search and gradient-refinement hyperparameters are tuned on photon-domain
833 modalities and transferred without modification to electron, spin, acoustic, and particle do-
834 mains. Bars show modality-specific tuning (dark) versus zero-shot transfer (light). Transfer
835 efficiency is high across all carrier families, confirming the carrier-agnostic nature of the PWM
836 correction pipeline.